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Rental Harmony: 

Sperner's Lemma in Fair Division 


Francis Edward Su 

My friend's dilemma was a practical question that mathematics could answer, both 
elegantly and constructively. He and his housemates were moving to a house with 
rooms of various sizes and features, and were having trouble deciding who should 
get which room and for what part of the total rent. He  asked, "Do you think 
there's always a way to partition the rent so that each person prefers a different 
room?" 

As we shall see, with mild assumptions, the answer is yes. This rent-partitioning 
problem is really a kind of fair-division question. It can be viewed as a generaliza- 
tion of the age-old cake-cutting problem, in which one seeks to divide a cake fairly 
among several people, and the chore-diuision problem, posed by Martin Gardner in 
[6, p. 1241, in which one seeks to fairly divide an undesirable entity, such as a list 
of chores. Lately, there has been much interest in fair division (see the recent 
books [3] and [Ill), and each of the related problems has been treated before (see 
[I], [dl, [lo]). 

We wish to explain a powerful approach to fair-division questions that unifies 
these problems and provides new methods for achieving approximate eny-free 
divisions, in which each person feels she received the "best" share. This approach 
was carried out by Forest Simmons [12] for cake-cutting and depends on a simple 
combinatorial result known as Sperner's lemma. We show that the Sperner's 
lemma approach can be adapted to treat chore division and rent-partitioning as 
well, and it generalizes easily to any number of players. 

From a pedagogical perspective, this approach provides a nice, elementary 
demonstration of how ideas from many pure disciplines-combinatorics, topology, 
and analysis-can combine to address a real-world problem. Better yet, the proofs 
can be converted into constructive fair-division procedures. 

1. SPERNER'S LEMMA FOR TRIANGLES. Our fair division approach is based 
on a simple combinatorial lemma, due to Sperner [13] in 1928. However, do not be 
fooled-this little lemma is as powerful as it is simple. It can, for instance, be used 
to give a short, elementary proof of the Brouwer fixed point theorem [71. 

As motivation, we examine a special case of Sperner's lemma. Consider a 
triangle T triangulated into many smaller triangles, called elementary triangles, 
whose vertices are labelled by l's, 2's, and 3's, as in Figure 1. 

The labelling we have chosen obeys two conditions: (1) all of the main vertices 
of T have different labels, and (2) the label of a vertex along any edge of T 
matches the label of one of the main vertices spanning that edge; labels in the 
interior of T are arbitrary. Any labelled triangulation of T satisfying these 
conditions is called a Sperner labelling. The claim: 

Sperner's Lemma for Triangles. Any Sperner-labelled triangulation of T must con- 
tain an  odd number of elementary triangles possessing all labels. In  particular, there is 
at least one. 
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2 2 1 1 

Figure 1. A Sperner labelling, with (1,2,3)-triangles marked. 

In Figure 1, we have marked all elementary 123-triangles; their parity is indeed 
odd. An analogous statement holds in any dimension, which we develop presently. 

2. THE n-DIMENSIONAL SPERNER'S LEMMA. We need the concept of an 
n-simplex: a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a 
triangle, a 3-simplex is a tetrahedron, etc. In general, an n-simplex may be 
regarded as an n-dimensional "tetrahedron7-the convex hull of n + 1 affinely 
independent points in Rm, for m 2 n. These points form the vertices of the 
simplex. A k-face of an n-simplex is the k-simplex formed by the span of any 
subset of k + 1vertices. 

A triangulation of an n-simplex S is a collection of (distinct) smaller n-simplices 
whose union is S, with the property that any two of them intersect in a face 
common to both, or not at all. The smaller n-simplices are called elementaly 
simplices, and their vertices are called vertices of the triangulation. 

Given an n-simplex S, any face spanned by n of the n + 1 vertices of S is 
called a facet. As examples, the facets of a line segment are its endpoints, the 
facets of a triangle are its sides, and the facets of a tetrahedron are its triangular 
faces. 

Now number the facets of S by 1,2, .  . . ,n + 1. Given a triangulation of S, 
consider a labelling that obeys the following rule: each vertex is labelled by one of 
the facet numbers in such a way that on the boundary of S, none of the vertices on 
facet j is labelled j. The interior vertices can be labeled by any of the facet 
numbers. Such a labelling is called a Sperner labelling of an n-simplex; it generalizes 
the definition we encountered earlier for n = 2. For other low dimensions, Figures 
2 and 3 show examples of a Sperner-labelled 1-simplex and 3-simplex. 

Figure 2. A triangulated line, with Sperner labelling. 
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1, 2, or 3 
for vertices on facet #4 

2, 3, or 4 
for vertices on facet #1 

\ / /  > on interior vertices 

on this edge 

facet #3  underneath 

facet #2 in back 


Figure 3. A triangulated tetrahedron, with Sperner labelling. 

A Sperner labelling may be described equivalently as one in which main vertices 
of S are assigned distinct labels, and any other vertex in the interior of some k-face 
must be assigned one of the labels of the main vertices that span that face. In 
either description it is apparent that the Sperner labelling on S induces Sperner 
labellings on each facet as (n - 1)-simplices. 

We call an elementary simplex in the triangulation fully labelled if all its vertices 
have distinct labels. Then we have: 

Sperner's Lemma. Any Sperner-labelled triangulation of a n-simplex must contain an 
odd number of fully labelled elementa~y n-simplices. In particular, there is at  least one. 

There are many ways to prove this lemma. The simplest proofs involve parity 
arguments and are non-constructive. A constructive method for finding a fully 
labelled simplex is based on the following induction argument; it is useful later in 
our discussion of fair-division procedures in Sections 5 and 7. 

Proof: We proceed by induction on the dimension n. 
When n = 1, a triangulated 1-simplex is a segmented line, as in Figure 2. The 

endpoints of the line are labelled distinctly, by 1 and 2. Hence in moving from 
endpoint 1to endpoint 2 the labelling must switch an odd number of times, i.e., an 
odd number of (1,2)-edges may be located in this way. 

Now assume that the theorem holds for dimensions up through (n - 1). We 
show the theorem is true for a triangulated, Sperner-labelled n-simplex S using 
the labels 1through (n + 1). For concreteness refer to the case n = 2 as a running 
example while following the argument. In this case, S is a triangulated triangle, as 
in Figure 4. 

Think of the n-simplex S as a "house" triangulated into many "rooms," which 
are the elementary simplices. A facet of a room is called a "door" if that facet 
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Figure 4. House, rooms, and doors indicated by dotted lines. 

carries the first n of the n + 1 labels. In our running example, doors are 
(1,2)-edges that may be in the interior or on the boundary; see Figure 4. For the 
case n = 3, doors are any room facets labelled (1,2,3). 

We claim that the number of doors on the boundary of S is odd. Why? The only 
facet that can contain doors is the (n + 1)-st because of the Sperner labelling. But 
that facet of S is Sperner-labelled using the labels 1,.. .,n, hence by the inductive 
hypothesis there must be odd number of fully labelled (n - 1)-simplices on that 
facet. These are boundary doors when considered in S .  

The boundary doors can be used to locate fully labelled rooms by what we 
fondly call a "trap-door" argument. The key observation is that every room can 
have at most 2 doors, and it has exactly 1 door if and only if the room is fully 
labelled in S.  This is true because any room with at least one door has either no 
repeated labels (it is fully labelled), or it has one repeated label that appears twice. 
These give rise to 2 distinct doors, one for each repeated label. As examples, verify 
that elementary triangles in Figure 4 have either two, one, or no (1,2)-edges. For 
n = 3, verify that a tetrahedron with labels {I,2,3,3) has two doors. 

So, start at any door on the boundary (located by the inductive step), and "walk" 
through the door into the adjoining room. Either this room is fully labelled or it 
has one other door-a "trap-door" that we can walk through. Repeat this 
procedure, walking through doors whenever possible. Notice that this path cannot 
double back on itself (because each room has at most two doors), so no room is 
ever visited twice. Moreover the number of rooms is finite and so the procedure 
must end, either by walking into a fully labelled room or by walking back through 
to a boundary door of S; see Figure 5. 

Since the number of boundary doors of S is odd, and trap-door paths pair up 
only an even number of them, the number of boundary doors left over that lead to 
fully labelled rooms must be odd. Moreover, any fully labelled rooms not reach- 
able by paths from the boundary must come in pairs, matched up by their own 
trap-door paths, as in Figure 5.  Hence the total number of fully labelled rooms in 
S is odd. rn 
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Figure 5. Walking through doors. 

This proof yields a constructive method for finding such rooms in the following 
way. Trap-door paths in successive dimensions can be linked up at their endpoints, 
because a fully labelled room in an i-dimensional face is just a boundary door in an 
(i + 1)-face. This creates "super-paths" with endpoints in the bottom and top 
dimensions, i.e., either (1,2)-edges on a 1-face of S ,  or n-dimensional fully labelled 
rooms in the interior. The constructive procedure begins by moving along the 
1-face of S spanned by labels 1 and 2, following any super-path that is encoun- 
tered. Because the number of (1,2)-edges is odd, and super-paths can pair up only 
an even number of them, we see that at least one super-path can be followed to 
yield a fully labelled room. 

The trap-door argument to prove Sperner's lemma constructively dates back to 
Cohen [S] and Kuhn [S]. A quick non-constructive proof would note the equality 
between the number of doors in each room, summed over all rooms, and the 
number of times each door is counted, summed over all doors. Modulo two, the 
first sum captures the parity of the number of fully labelled rooms, and the second 
sum captures the parity of the number of boundary doors, which by the inductive 
hypothesis is odd. 

3. SIMMONS' APPROACH TO CAKE-CUTTING. Now imagine a rectangular 
cake to be divided among n people, who may have differing notions of what is 
valuable on a cake. We use n - 1 knives to cut along planes parallel to the left 
edge of the cake, as in Figure 6. 

Figure 6. A cut-set of a cake. 
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The set of cuts is fully defined by the relative sizes of the pieces. Assume 
that the total size of the cake is 1 and denote the physical size of the i-th 
piece by xi; this is an absolute measure, unrelated to player preferences. Thus 
x, + x, + ... +xn = 1 and each xi 2 0. The space S of possible partitions natu- 
rally forms a standard ( n  - 1)-simplex in Rn. Each point in S corresponds to a 
partition of the cake by a set of cuts, which we shall call a cut-set. 

Given a cut-set, we say that a player prefers a given piece if the player does not 
think any other piece is better. We assume that this preference depends on the 
player and the entire cut-set, but not on choices made by the other players. Note 
that, given a cut-set, a player always prefers at least one piece, and may (in case of 
ties) prefer more than one piece by our definition. 

We make the following two assumptions: 

(1) 	The players are hungry. That is, players prefer any piece with mass to an 
empty piece. 

(2) 	Preference sets are closed. This means that any piece that is preferred for a 
convergent sequence of cut-sets is preferred at the limiting cut-set. Note 
that this condition rules out the existence of single points of cake with 
positive desirability. 

Theorem. For hungiy players with closed preference sets, there exists an eny-free 
cake division, i.e., a cut-set for which each person prefers a different piece. 

We first investigate what happens for n = 3 people. Suppose the players are 
named Alice, Betty, and Charlie. They are to divide a cake of total size 1, using 2 
knives. Denote the physical size of the pieces by x,, x,, x,. Since x, + x, + x, = 1 
and all xi 2 0, the solution space S is a plane intersected with the first octant. This 
is just a triangle. 

Now triangulate S and assign "ownership" to each of the vertices as in Figure 7, 
where A stands for Alice, B for Betty, and C for Charlie. We have purposely 

Figure 7. Labelling by ownership. 
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assigned ownership so that each elementary triangle is an ABC triangle. Observe 
that a similar triangulation of finer mesh can also be labelled in this way. 

We obtain a new auxiliary labelling of the triangulation by l's, 23, and 3's by 
doing the following: since each point in the triangle corresponds to a set of cuts of 
cake, go to each vertex, and ask the owner of that vertex, "Which piece would you 
choose if the cake were cut with this cut-set?" Label that vertex by the number of 
the piece that is desired. 

We claim that this new labelling is a Sperner labelling! Why? 
At the vertex (1,0,0) of S we see that one of the pieces contains the entire cake, 

and the other pieces are empty. By the hungry assumption, the owner of (1,0,0) 
always chooses piece 1 no matter who the owner is. Similarly (0,1,0) is labelled 2 
and (0,0,1) is labelled 3. Next, observe that the sides of the triangle correspond to 
cuts in which one piece is devoid of any cake. Because no one would ever choose 
this empty piece, each side of S is missing one label corresponding to the piece 
that is empty. Hence the Sperner labelling condition is satisfied. 

By Sperner's lemma, there must be a (1,2,3)-elementary simplex in the triangu- 
lation. Since every such simplex arose from an ABC triangle, this means that we 
have found 3 very similar cut-sets in which different people choose different pieces 
of cake. 

To show the existence of a single cut-set that would satisfy everyone with 
different pieces, carry out this procedure for a sequence of finer and finer 
triangulations, each time yielding smaller and smaller (1,2,3)-triangles. By com- 
pactness of the triangle and decreasing size of the triangles, there must be a 
convergent subsequence of triangles converging to a single point. Such a point 
corresponds to a cut-set in which the players are satisfied with different pieces. 
Why? 

Since each (1,2,3)-triangle in the convergent subsequence arises from an ABC 
triangle, consider the choices that the players made in each. With only finitely 
many ways for players to choose pieces, there must be an infinite subsequence in 
which the choices of A,  B, and C are all constant. Closed preference sets 
guarantee that at the limit point of this subsequence of triangles, the players are 
satisfied with distinct choices. 

4. THE n-PLAYER CASE. The preceding proof generalizes easily for n players. 
The only issue that must be addressed is the choice of triangulation for S when 
n > 3. We need a triangulation in which each elementary simplex can be fully 
labelled by the names of the players. The triangulation we proposed for n = 3 
does not generalize easily. However, one that works for arbitrary dimensions is a 
triangulation by balycentric subdivision. Loosely speaking, this procedure takes 
each elementary simplex in a triangulation and subdivides it by marking the 
barycenters of the faces in each dimension and connecting them to form a new 
triangulation. A rigorous description of this procedure may be found in [15]. 
Observe that the mesh of this triangulation can be made arbitrarily small by 
iterating this procedure; see Figure 8. 

Suppose we have iterated barycentric subdivision m times. The desired labelling 
can be achieved by allowing all vertices that remain from the (m - 0 t h  iteration 
to be labelled A. Any new vertices introduced in the m-th barycentric subdivision 
are barycenters of simplices of the (m - 1)-th subdivision. To each class of vertices 
that are barycenters of faces of the same dimension, assign a distinct owner from 
the persons remaining. There are n - 1such classes. One may verify that this fully 
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Figure 8. Barycentric subdivision in a 2-simplex, iterated twice. 

labels each of the elementary simplices by owners, because each edge connects 
vertices of different classes. 

Now the proof continues almost exactly as in the case n = 3: since each point in 
S corresponds to a cut-set, we construct a new labelling of the triangulation by 
asking the owner of each vertex, "Which piece would you choose if the cake were 
cut with these cuts?" The new auxiliary labelling is a Sperner labelling and yields 
nearby cut-sets that satisfy each person differently. Because this may be done with 
arbitrarily fine triangulations, by taking subsequences, one may find sequences of 
cut-sets all converging to one set of cuts in which each person chooses a different 
piece. 

5. A CONSTRUCTIVE APPROXIMATE ALGORITHM. Notice that the preced- 
ing proof yields a constructive E-approximate algorithm for cake-cutting-namely, 
for any prespecified E (such as at the level of crumbs), one may find a set of cuts in 
which each person receives a piece he considers to be the best up to €-tolerance in 
the size of the pieces. Simply start the procedure with triangulation mesh size less 
than E ,  and then the "trap-door" argument gives a constructive method for finding 
a fully owner-labelled elementary simplex. Choosing any vertex of this simplex 
yields a cut-set representing the desired E-approximate solution. 

Such an algorithm could be implemented on a computer, which could keep 
track of what cuts to suggest tentatively and which player to ask, by simply 
following trap-doors through the simplex of cut-sets. Note that players do not have 
to state their preferences on every vertex in the triangulation, but only on vertices 
near a trap-door path, i.e., the complete auxiliary labelling may not need to be 
determined. So while this algorithm terminates in a number of steps bounded by 
the number of simplices of the triangulation, it can terminate much sooner. 

We emphasize that this notion of E-approximation is based on the physical size 
of the pieces, not on any quantitative measure of player preferences. However, if 
one assumes the players' measures are continuous over the simplex, then by 
compactness of the simplex and the finite number of players, for any E > 0 there 
exists a S > 0 such that pieces of physical size less than S are believed by each of 
the players to be size less than E. 

6. CHORES AND RENT-PARTITIONING. Now we show how Simmons' cake- 
cutting method can be adapted to address other fair-division problems, such as 
chore division and rent-partitioning. 

Finding schemes for envy-free chore division has historically been a more 
complicated problem than cake-cutting. Most envy-free procedures for cake-
cutting do not carry over to chore division without significant modifications. Oskui 

December 19991 RENTAL HARMONY 937 



[9] solved the case for 3 people; following modifications proposed by Brams and 
Taylor in [2, pp. 37-39] and [3, pp. 153-551, Peterson and Su [lo] gave an explicit 
chore division scheme for an arbitrary number of players. We now give a simpler 
6-approximate algorithm for chore division, which falls out nicely as a special case 
of the rent-partitioning problem. 

In this problem, n housemates have decided to rent an n-bedroom house for 
some fixed rent. Each housemate may have different preferences-one may prefer 
a large room, another may prefer a room with a view, etc. Is there a method for 
fairly dividing the rent among the rooms? We prove the following: 

Rental Harmony Theorem. Suppose n housemates in an n-bedroom house seek to 
decide who gets which room and for what part of the total rent. Also, suppose that the 
following conditions hold: 

(1) (Good House) 	In any partition of the rent, each person finds some room 
acceptable. 

(2) (Miserly Tenants) Each person always prefers a free room (one that costs no  
rent) to a non-free room. 

(3) (Closed Preference Sets) 	A person who prefers a room for a convergent 
sequence of prices prefers that room at the limitingprice. 

Then there exists a partition of the rent so that each person prefers a different room. 

Condition (1) ensures that the problem is well-posed-one cannot talk about 
preferences if some person finds no room acceptable, which might happen, for 
instance, if the rent is too high for all rooms or the rooms are in poor condition. 

The miserly condition (2) can be relaxed a bit, as we show in Section 8. The 
condition also rules out "free closets," i.e., rooms in which no one would live, even 
if free. 

Condition (3) merely says that in the space of all pricing schemes, preference 
sets are closed in the topological sense. Note that preference sets may overlap-if 
in some pricing scheme a person equally prefers two rooms, that person can be 
assigned to either room. 

The rent-partitioning problem may be viewed as a generalization of the cake- 
cutting problem, in which one seeks to divide goods fairly, and the chore division 
problem, in which one seeks to divide bads fairly. However, since the rooms (the 
goods) are indivisible, known cake-cutting solutions cannot be applied to this 
problem. And since the rental payments (the bads) are attached to specific rooms, 
they cannot be divided into more than n pieces and reassembled, which rules out 
the use of known envy-free chore-division methods such as the discrete method 
proposed in [3, pp. 154-551 and the procedures proposed in [lo]. The two other 
moving knife schemes proposed for chore division in [3, pp. 153-541 guarantee 
each player at most l / n  of the chores, but are not envy-free. 

Alkan, Demange, and Gale [I, pp. 1031-321 have addressed this generalization 
directly and offer a solution to rent-partitioning via constrained optimization. They 
implicitly assume conditions equivalent to our conditions (1) and (3), and use a 
condition weaker than condition (2), but not quite as weak as the condition (2') 
that we give in Section 8. 

We now show how a Sperner's lemma approach can address the rent-partition- 
ing problem. 
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7. RENTAL HARMONY: CAKE-CUTTING WITH A TWIST. Our proof of the 
Rental Harmony Theorem follows Simmons' proof for cake-cutting, but with a 
twist, so we sketch it. 

Suppose there are n housemates, and n rooms to assign, numbered 1,. . . ,n. 
Let x,denote the price of the i-th room, and suppose that the total rent is 1.Then 
x,  + x,  + ... +xn = 1 and x, 2 0. From this we see that the set of all pricing 
schemes S forms an (n - 1)-simplex in Rn. 

Now triangulate this simplex by barycentric subdivision of small mesh size. 
Label it with a fully labelled vertex labelling by the names of the housemates (the 
same scheme as suggested for cake-cutting). The name at each vertex will be 
considered the "owner" of that vertex; recall that each vertex corresponds to some 
pricing scheme for the rooms. 

Construct a new labelling from the old by asking the owner at each vertex in the 
triangulation: "If the rent were to be divided according to this pricing scheme, 
which room would you choose?" Condition (1) ensures that some answer can be 
given. Label the vertex by the number of the room that is answered. Let ties in 
preference be broken arbitrarily. 

Here's the twist: the new labelling that results is quite different from the one 
that arose in cake-cutting. It is not a Sperner-labelling. However, because of the 
miserly condition (2), it has the property that along each (n - k)-dimensional face, 
k rooms are free and thus owners along that face prefer one of those k rooms. 
Figure 9 shows what such a labelling looks like for n = 3. 

Is there a Sperner-like combinatorial lemma that shows the existence of a fully 
labelled elementary simplex in this triangulation? 

If so, one could proceed as in cake-cutting, by taking finer and finer triangula- 
tions to get a sequence of fully labelled elementary simplices converging to a point, 

2 or 3 1or 3 

3 only 

Figure 9. The dual labelling arising from rent-partitioning. 
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which by condition (3) yields a pricing scheme in which all housemates prefer 
different rooms. So, all that remains is to establish the Sperner-like combinatorial 
lemma with a constructive proof. 

There are two ways one may proceed. The reader may enjoy proving a 
Sperner-like lemma for this labelling by using a trap-door argument. The interest- 
ing thing that one discovers about this labelling is that on each facet, there is only 
one fully labelled simplex that can be followed into the interior, so that the 
trap-door procedure succeeds without returning to the boundary again. 

Or the reader may wish to prove the existence of a fully labelled simplex on the 
interior by appealing directly to Sperner's lemma. The key idea is to dualize the 
simplex S to form a new simplex S*. Loosely speaking, the dual of a simplex 
reverses the dimensions of k-dimensional and (n - 1 - k)-dimensional faces. For 
instance, the corner vertices of S become the facets of S* ,  and the facet 
barycenters of S become the vertices of S*;  see Figure 10. 

Figure 10. The dualization S" of S. Vertices, barycenters, and one elementary simplex are 
marked to show how they are transformed. 

A rigorous treatment of dualization can be found in Vick [IS]. Note that S* can 
be triangulated-in fact, using barycentric subdivision, the vertices and elementary 
simplices of S* are in 1 - 1 correspondence with the vertices and elementary 
simplices of S .  Let the triangulation of S* inherit a labelling via this correspon- 
dence with S. One may now verify that the labelling of S* is a Sperner labelling! 
Hence there exists a fully labelled elementary simplex of S*, which corresponds to 
a fully labelled elementary simplex of S ,  as desired. This "dual" Sperner lemma is 
due to Scarf [16]. 

A constructive algorithm is obtained by following "trap-doors" in Sperner's 
lemma. Choose an E smaller than the rental difference for which housemates 
wouldn't care (a penny?). Following trap-doors corresponds to suggesting pricing 
schemes and then asking various players, "Which piece would you choose if the 
rooms were priced like this?" Once a fully labelled elementary simplex is found, 
any point inside it corresponds to an 6-approximate rent-partitioning. We invite 
the reader to code a trap-door algorithm that could be implemented on a 
computer, one that would propose the necessary cut-sets and question the appro- 
priate players at each step. 

It is possible to obtain the Rental Harmony Theorem without any dualization 
argument and without condition (2) if one allows the possibility of negative rents. 
Specifically, let each person contribute a fixed amount K to a pool from which the 
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rent is paid. The leftover money is used to pay "rebates" associated with each 
room (which may be larger than K). This converts the problem into a fair division 
of goods (rebates), in which the space of rebates is a simplex that assumes a 
Sperner labelling if players demand a non-zero rebate. For large K this is quite 
reasonable. However, solutions may include situations in which a housemate is 
being paid by the others to live there. Thus allowing this possibility may not be 
realistic because in real life, paying housemates are more likely to ditch the 
subsidized housemate and use the extra room (and extra money) in other ways. 

8. COMMENTS AND DISCUSSION. The Rental Harmony Theorem establishes 
the existence of envy-free chore division and a new E-approximate algorithm, by 
simply thinking of the rent payments as chores and ignoring the rooms; divisibility 
of chores can be achieved by dividing the time spent on them. When reinterpreted, 
the three conditions from the Rental Harmony Theorem become: (1) all the chores 
must be assigned, (2) each person prefers no chores to some chores, and (3) 
preference sets are closed. These are pretty reasonable assumptions. The E-ap- 
proximate algorithm that arises from this does not involve a lot of cutting and 
reassembling, as do the exact methods proposed in [3] and [lo]. 

For rent-partitioning, we point out that condition (2) may not always be a 
reasonable assumption. For instance, someone may be willing to pay a little bit of 
money for a room that is slightly larger than a free room. However, by inspecting 
the proof, one sees that the Rental Harmony Theorem still holds with a weakened 
version of condition (2): 

Condition (2'). Each person never chooses the most expensive room if  there is a 
free room available. This does not require the person to choose the free room. 

In particular, this will hold if a person always prefers a free room to a room 
costing at least l / (n  - 1) of the total rent. Hence condition (2') is a slightly 
weaker sufficient condition than that given by [I, pp. 1031-321. To see why the 
Rental Harmony Theorem still holds, consider its proof and note that using this 
condition gives a more complicated labelling of S, but the corresponding labelling 
on S* still remains Sperner. 

What condition (2') does not address is a situation in which the total rent is so 
low, or some room so large, that one would be willing to pay for the most 
expensive room even when some other room is free. In practice, however, house- 
mates do not usually choose a house with such lopsided arrangements. Even still, 
condition (2') can likely be weakened further, but the extent to which it can (and 
still maintain non-negative rents) is an open question. 

Other triangulations may be used instead of barycentric subdivision. These have 
better convergence properties but are harder to describe; see [17] for a survey and 
applications to fixed point algorithms. 

9. ANECDOTE AND ACKNOWLEDGMENTS. My first exposure to the Sperner 
argument for cake-cutting came via Michael Starbird, who attributed the method 
to a graduate student of his, Forest Simmons. Simmons had been presenting this 
cake-cutting scheme to math clubs and high school groups, but never formally 
submitted the idea for publication. His inspiration was the MONTHLY article by 
Stromquist [14], which made use of a theorem that can be proved by Sperner's 
lemma. 
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Many years later, when my friend Brad Mann told me about the rent-partition- 
ing dilemma that he and his housemates were facing, I was reminded of these 
ideas and realized that Sperner's lemma could also be adapted to treat rent-parti- 
tioning, as well as chore division. 

I am grateful to Arthur Benjamin, Steven Brams, Brad Mann, Forest Simmons, 
and Ravi Vakil for many helpful discussions, and I thank Michael Starbird for 
introducing me to Sperner's lemma. 
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