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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

Which Tanks Empty Faster? 

Leonid G. Hanin 

Suppose that water towers like those shown in Figure 1 are initially filled with 
water and have the same volume, height, and cross-sectional outlet area. Which 
one empties first? This problem arises naturally when designing water-supplying 
tanks or funnels. 

We find a formula expressing the emptying time as a function of the volume of 
liquid and its initial height. We compute the emptying time for several specific 
tank shapes, in particular, for those shown in Figure 1. We also address the 
question whether there exists a tank with a given volume and height for which the 
emptying time is minimal. 

b c 

Figure 1 

1. Mathematical Model. Suppose a tank of volume V and height H is initially 
filled with an incompressible liquid. A small (but not microscopic) hole with 
cross-sectional area S is made in the bottom of the tank. Let A(h), 0 5 h IH ,  be 
the area of the tank cross-section at height h. We assume that the function A(h) is 
continuous. 

Let h be the height of the liquid in the tank at a time t. Let Ah be the height 
drop during a small amount of time At that elapses from the moment t. Then the 
volume decrease AV approximately equals A(h)Ah. As we show later, the velocity 
of the outgoing flow is a function of liquid height: u = u(h). Hence, the volume of 

December 19991 NOTES 943 



the liquid leaving the tank during the time At is approximately equal to Su(h)At.  
Thus, A(h )Ah  = -Su(h)At.  Letting At -+ 0, we obtain the differential equation 

To solve it, the function u(h) must be specified. 

2. Torricelli's Law. In 1640, E. Torricelli found that 

u ( h )  = m, ( 2 )  
where g is the acceleration due to gravity. Here is a simple argument for (2);see 
also [I]  and [2]. Let A m  be the mass of the liquid leaving the tank during the time 
At. Then the potential energy loss A n  is approximately equal to Amgh. The 
kinetic energy AK of the equal amount of liquid flowing out of the tank through 
the orifice during the time At is about Amu2(h) /2 . Equating A n  and A K  gives 
(2). For a careful derivation of Torricelli's formula, see [3, pp. 47-48 and 56-59]. 

In reality, due to viscosity of the liquid, its rotation, and constriction of the jet 
emerging from the tank, (2)  is not quite accurate, especially in the case of 
non-horizontal outflow. Experiments show that for a circular orifice 

where the constant a depends on the physical properties of the liquid [3, pp. 
47-48]. For example, the approximate value of the coefficient a for water is 0.84. 

If liquid were oozing from the tank at the constant initial rate u, = u ( H ) = am,then the emptying time T *  would be 
v v 


However, according to Torricelli's law, the efflux rate is decreasing with the 
decrease of height. Therefore, the emptying time T is 

where k > 1. In general, the coefficient k depends on the height H and the shape 
of the tank. We show, however, that for many practically important tank forms, the 
coefficient k is an absolute constant. 

3. Emptying Time. With (3 ) taken into account, the differential equation (1) takes 

Some properties of this equation are discussed in [I] and [2]. A classroom 
demonstration based on this equation for a cylindrical container is described in [41. 

The solution h = h ( t )  of (6) satisfying the initial condition h(0) = H is given 
implicitly by 

Since h ( T )  = 0, we obtain from (7) that 

This formula provides a closed expression for the emptying time T 
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Observing that 

we rewrite (8) in the form (9,where 

We set 

g ( s )  :=A ( s 2 ) ,  0 5 s 5 f i ,  
in (9)and (10) to find that 

hHy= ifig(V = 2 1 f i g ( s ) s  ds and du s )  ds. 
0 

This leads to the following alternative expressions for k:  

The case of a circularly symmetric tank is probably the most important. The 
lateral surface of such tank is obtained by rotating the graph of a nonnegative 
continuous function f (h) ,  0 5 h 5 H ,  about the h axis. Then 

A ( h )  = 77f , ( h ) .  (14) 
Suppose f is homogeneous of some order 0 2 0: that is, for any h > 0 and for all 
admissible h E [ O ,  HI ,  

f ( h h )  = h 8 f ( h ) .  (15)  

Then the function g defined by (11) is homogeneous of order 48. In view of (131, 
this leads to the important conclusion that in this case the coefficient k depends 
only on f ,  that is, only upon the shape of the tank. 

We compute the coefficient k for a few simple and widely used tank shapes, 
including those in Figure 1. Formula (5) then gives the emptying time. 

Cylinder. Let the tank be a right circular cylinder of height H with base radius R ,  
where R2 = V/(n-H);see Figure la. In this case, f (h )  = R ,  0 I h I H ,  which is a 
homogeneous function of order 0. Then g(s)  = ,rrR2,and therefore by (13),k = 2. 

Cone. For the tank in the form of a right circular cone (Figure 1b) with height H 
and radius R ,  where R 2  = 3V/(n-H),we have f (h )  = yh with y = H / R .  Then f 
satisfies (15)with 8 = 1, and it follows easily from (13)that k = 1.2. 

Frustum of a cone. Suppose the tank has the form of a right circular frustum of a 
cone with lower base radius R ,  and upper base radius R,. Then f (h )  = a + bh, 
where a = R ,  and b = ( R ,  - = ~ ( aR , ) /H ,  and g(s)  + bs2I2.A straightforward 
calculation based on (13)gives the following expression for the coefficient k: 
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- - - - - - - 

Thus, k is independent of H. For R, = 0, (16) yields the value 1.2 already 
obtained for the cone. In the other extreme case of the inverse cone (R, = O), we 
have k = 3.2. For R, = R,, (16) produces the value k = 2 already found earlier 
for the cylinder. 

Spherical tanks. Let the tank be a truncated sphere of height H ,  which is the 
most popular form for aquariums. The radius R of the sphere is determined by 
the tank volume through the formula V = r H 2 ( R  - H/3). In this case, f '(h) = 

h(2R - h), 0 I h 5 H. Hence, g(s) = 77-s2(2~- s2), and by (13) we obtain after a 
short calculation that 

2 10R - 3 H  
k ( H )  = - .

5 3 R - H '  
In particular, for a hemispherical tank ( H  = R), we find that k = 1.4 while for a 
complete spherical tank ( H  = 2R; see Figure Ic), we obtain k = 1.6. 

Table 1 summarizes our results and shows the relative emptying efficiency of 
various tank forms. The conic shape turns out to be significantly more efficient 
than other natural shapes. This explains why it is so widely used for funnels. 
Formula (5) and Table 1 allow us to compare emptying times of tanks of various 
shapes with variable volume and height. 

TABLE1 "Emptying efficiencies" of different tank shapes 

Tank Inverse 
Shape Cone Hemisphere Sphere Cylinder cone 

k 1.2 1.4 1.6 2 3.2 

For physical reasons, the coefficient k is always larger than 1. Can it be less 
than 1.2? As shown in the next section, the answer to this question is YES! 

4. Are there Tanks with the Minimal Emptying Time? Let the function that 
determines the shape of a circularly symmetric tank be 

with some constants p 2 0 and C > 0. Given p ,  the value of C can be found from 
the relation V = , r rC2~2p+1 / (2p+ 1). The function (17) is homogeneous of order 
0 = p.  Then g(s) = rC2s4p,  and using (13) we obtain easily that 

For p = 0 and p = 1, we recover the values of k = 2 for the cylinder and k = 1.2 
for the cone, respectively. For p = 2, we have k = 10/9, which means that, for the 
parabolic tank shown in Figure Id, the emptying time is more than 7% smaller 
than for the corresponding conic tank in Figure 1b. 

It follows from (18) that, for power functions (17) with large p ,  the coefficient k 
can be as close to 1 as we wish. Therefore, the emptying time can be arbitrarily 
close to its theoretical minimum (4). We show, however, that the minimum is not 
attained. This means that among all tanks with a given volume and height none has 
the minimal emptying time. Our argument also provides a mathematical proof that 
k > 1. 

Consider tanks with a given volume V and height H. We continue to assume 
that the cross-sectional area A(h) at height h is a continuous function of h. 
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According to (8) and (121, we are dealing with the extremal problem 

T ( g )  := t g ( s )  ds -min 

subject to theconstraint /,"g(s)s ds = b ,  where a = v@, b = V,  and g belongs to 
the class G of nonnegative continuous functions on [ O ,  a ] .  Consider a similar 
problem 

on the larger class N of nonnegative finite Bore1 measures v on [O, a] .  For every 
v E N, we have 

where 8, is the Dirac measure at a.  Therefore, the measure v* := b8,/a is a 
minimizer of the functional T o n  the set N, and the minimum value of Y o n  N is 
equal to b / a .  Taking a clue from (13), we find that the corresponding minimal 
value of k is 

If for some v E N we have f l u )  = b / a ,  then /,"(a - s ) d v ( s )  = 0, whence it 
follows that v is proportional to the Dirac measure at a.  Therefore, (19) ensures 
that v = v" .  Thus, the minimizer v" is unique. This implies that the infimum of 
the functional Ton the set G is not attained. However, there are sequences of 
functions in G for which the corresponding values of the functional T converge 
to b / a .  One of them is a sequence of functions g, that are related via (11) and 
(14) to functions (17) with a sequence p,, tending to infinity. 
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