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The Mandelbrot Set, the Farey Tree, 
and the Fibonacci Sequence 

Robert L. Devaney 

1. INTRODUCTION. Our goal is to explain and to make precise several "folk 
theorems" involving the Mandelbrot set and the Farey tree [4]. 

The Mandelbrot set is a subset of the parameter plane for iteration of the 
complex quadratic function Q,(z) = z 2  + c. Here the parameter c is complex. 
The Mandelbrot set A?' consists of those c values for which the orbit of 0-the 
sequence 0, Qc(0), Q,(Q,(O)) = Q?(O), Q:(0), . . . -is bounded. 

One reason for singling out the orbit of 0 is the following important fact from 
complex dynamics: If Q, possesses an attracting cycle, then the orbit of 0, the 
critical point, must converge to that cycle [3]; a cycle is an orbit 
z,, Qc(zo), . . . ,Q,"(z,) = z, that returns to itself after n iterations. A cycle is called 
attracting if all sufficiently nearby points have orbits that tend to the cycle. 

Since the orbit of 0 tends to any attracting cycle of Q,, it follows that Q, admits 
at most one attracting cycle. Also, a c-value for which Q, has an attracting cycle 
must lie in A' since the orbit of 0 is bounded. In fact, the c-values for which Q, 
has an attracting cycle comprise all of the visible interior of the Mandelbrot set. By 
visible, we mean that nobody has ever found experimentally or otherwise a 
component of the interior that does not have this property. One of the main 
conjectures concerning A?' is that its interior consists only of c-values for which 
there is an attracting cycle. 

The Mandelbrot set features a basic cardioid shape from which hang numerous 
"bulbs" or "decorations"; see Figure 1. Each of these bulbs is a large disk that is 
directly attached to the cardioid, together with numerous other smaller decora- 
tions and a prominent "antenna." 

Each of these large disks turns out to contain c-values for which Q, admits an 
attracting cycle with period q and rotation number p/q. That is, the attracting 
cycle of Q, tends to rotate about a central fixed point, turning on average p/q 
revolutions at each iteration. For this reason, this bulb is called the p/q bulb. 
Each of the c-values in this bulb has essentially the same dynamical behavior. 

A perhaps surprising folk theorem says that we can recognize the p/q-bulb 
from the geometry of the bulb itself. That is, we can read off dynamical informa- 
tion from the geometric information contained in the Mandelbrot set. 

For example, the 2/5 bulb is displayed in Figure 2. For any c-value in this large 
disk, Q, features an attracting cycle with rotation number 2/5. The 2/5 bulb 
possesses an antenna-like structure that features a junction point from which five 
spokes emanate. One of these spokes is attached directly to the 2/5 bulb; we call 
this spoke the principal spoke. Now look at the "smallest" of the non-principal 
spokes. Note that this spoke is located, roughly speaking, 2/5 of a turn in the 
counterclockwise direction from the principal spoke. This is how we identify this 
bulb as the 2/5-bulb. 
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Figure 1. The Mandelbrot set. 

Figure 2. The 2/5 bulb. 

As another example, in Figure 3 we display the 3/7 bulb. This bulb has 7 spokes 
emanating from the junction point, and the smallest is located 3/7 of a turn in the 
counterclockwise direction from the principal spoke. This then is the folk theorem: 
You can recognize the p/q bulb by locating the "smallest" spoke in the antenna 
and determining its location relative to the principal spoke. Of course, the word 
"smallest" needs some clarification here; our goal is to make this notion precise. 
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Figure 3. The 3/7 bulb. 

As an additional disclaimer, this folk theorem is only about 80% true using the 
Euclidean notion of "smallness" or Lebesgue measure. We provide a somewhat 
different framework in which this result is always true. 

There is more to the story of interplay between the geometry of the Mandelbrot 
set and the corresponding dynamics. In Figure 4, we display the 1/2 and 1/3 
bulbs. The 1/2 bulb is the large bulb to the left; the 1/3 bulb is the topmost bulb. 
In between these two bulbs are infinitely many smaller bulbs, but the largest we 
recognize as the 2/5 bulb. Now note that 2/5 can be obtained from 1/2 and 1/3 
by "Farey addition": 

1 1 2 

As a second example, note that 

2 1 3 


and that the 3/8 bulb is the largest between the 2/5 and 1/3 bulbs; see Figure 5. 
That is, to obtain the largest bulb between two given bulbs (in a particular 

ordering), we simply add the corresponding fractions just the way we always 
wanted to add them, namely by adding the numerators and adding the denomina- 
tors. This is the second of the folk theorems we want to discuss. In particular, it 
follows that the size of bulbs is determined by the Farey tree, as we show in 
Section 6. 

Figures 4 and 5 represent the beginning of a very special sequence of p/q bulbs 
in the Mandelbrot set 

1 1 2 3 5  
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Figure 4. 3 @ f = +. 

Figure 5. 3 @ f = i. 
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whose numerators and denominators correspond to the Fibonacci sequence. We 
discuss this connection in more detail in Section 8. 

While we do not give complete proofs of each of these folk theorems, we do 
indicate some of the combinatorial arguments involved in making the statements 
precise. For more folk theorems and complete proofs, see [5]. 

2. THE FAREY TREE. Before discussing the Mandelbrot set, we recall a few facts 
about the Farey tree, which is a tree containing all of the rationals between 0 and 1. 
At each stage of its construction, the Farey tree consists of a finite list of rationals. 
Adjacent rationals in this list are called Farey neighbors. The inductive step in the 
construction of the tree is: Each pair of Farey neighbors produces a Farey child, 
which is the rational between the two whose denominator is the smallest. Natu- 
rally, the rationals that produce a Farey child are called its Fareyparents. 

One of the most intriguing features of the Farey tree is that we obtain Farey 
children by Farey addition. That is, the fraction between the Farey neighbors a/P 
and y/S is given by 

So, to obtain the fraction between two Farey neighbors whose denominator is the 
smallest, we simply add the numerators and add the denominators of the parents 
to obtain the child. For a proof that this yields the fraction between the parents 
with smallest denominator, we refer to [a]. 

We begin the construction of the tree with the pair of rationals 0 and 1, which 
we write as 0/1 and 1/1. Their child is 1/2, so the second stage of the 
construction gives the list 

0 1 1  

1 2 1 '  

At the next stage we obtain two new Farey children 

0 1 1 2 1  

1 3 2 3 1 '  

At generation four we find 

0 1 1 2 1 3 2 3 1  

1 4 3 5 2 5 3 4 1  

The Farey tree contains all rationals; see [8] or [9] for more details. 
One other fact that we use is that a/P and y/S are Farey neighbors if and only 

if a 8  - yp = +1. Consequently, we have 

This equality is easily proved by induction. 

3. THE MANDELBROT SET. The Mandelbrot set is 

A = {clQ,"(O) is bounded} 

for Q,(z) = z2 + c. Thus A!' gives a picture of those c-values for which the orbit of 
0 under Q, does not tend to w. 
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The visible bulbs in A correspond to c-values for which Q, has an attracting 
cycle of some given period. For example, the main central cardioid in A consists 
of c-values for which Q, has an attracting fixed point. This can be seen by solving 
for the fixed points (z2 + c = z) that are attracting: lQl,(z) I = 1221 < 1. Solving 
these equations simultaneously, we see that the boundary of this region is given by 
c = z - z2, where z = +ezTie.That is, 

parametrizes the boundary of the cardioid with 0 I8 I1. At c(8), Q,(,, has a 
fixed point that is neutral; the derivative of Q,(,, at this fixed point is eZTie. 

For each rational value of 8, there is a bulb tangent to the main cardioid at 
c(8). For c-values in the bulb attached to the cardioid at c(p/q), Q, has an 
attracting cycle of period q. We call this bulb the p/q bulb attached to the main 
cardioid and denote it by Bp/,. 

It is known that, as c passes from the main cardioid, through c(p/q), and into 
Bp/,, Q, undergoes a p/q-bifurcation. By this we mean: when c lies in the main 
cardioid near c(p/q), Q, has an attracting fixed point with a nearby repelling 
cycle of period q. At c(p/q) the attracting fixed point and repelling cycle merge to 
produce a neutral fixed point with derivative e2"'P/q. When c lies in B,/,, Q, now 
has an attracting cycle of period q and a repelling fixed point. 

When c = c(p/q), the local (linearized) dynamics are given by rotation through 
angle 2.ir(p/q). As a consequence, for nearby c E BPI,, the attracting cycle 
rotates about the repelling fixed point by jumping approximately 2.ir(p/q) radians 
at each iteration. For more details see [2]. 

4. ANGLE DOUBLING MOD 1. To prepare to use the fundamental results of 
Douady and Hubbard [6] regarding the Mandelbrot set we digress to recall some 
facts about the doublingfunction, which is defined on the circle considered as the 
reals modulo one and is given by D(8) = 2 8 mod 1. 

Fact 1: The angle 8 is periodic under D if and only if 8 is a rational of the form 
p/q (in lowest terms) with q odd. 

For example, the D-orbit of 1/3 is 

1 2 1 
- +, - +, - +, ... 
3 3 3 , 

which has period 2. The rational 1/7 has period 3 under doubling: 

while 1/5 has period 4: 

The rationals with even denominator are eventually periodic but not periodic. 
For example, 1/6 lies on an eventual 2-cycle 
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and 1/8 is eventually fixed: 

A second important fact about doubling is that we can read off the binary 
expansion of 8 by noting the itineraly of 8 in the circle relative to D.  To define 
the itinerary, we denote the upper semicircle 0 I8 < 1/2 by I, and the lower 
semicircle 1/2 8 < 1by Il.  Given 8, we attach an infinite string of 0's and 1's to 
8 as follows: The itinerary of 8 is B(8) = (s,s,s,.. . ), where sj is either 0 or 1: 
sj = 0 if Dj(8) E I,, and sj = 1if ~ j ( 0 )  E I,. That is, we simply watch the orbit of 
8 in the circle under doubling and assign 0 or 1 to the itinerary whenever Dj(8) 
lands in the arc I, or I,. 

Fact 2: The itinerary B(8) is the binary expansion of 8. 

For example, if 8 = 1/3, then 8 E I,, while D(8)  E I, and ~ ~ ( 8 )  = 8. Hence 
B(1/3) is the repeating sequence 01,which of course is the binary expansion of 
1/3. Similarly, B(1/7) = 001while B(1/5) = 0011. 

5. EXTERNAL RAYS. In order to make precise the folk theorems mentioned in 
the introduction, we recall some beautiful results of Douady and Hubbard [7] 
concerning the external rays of the Mandelbrot set. 

Let E = {zl lzl > 1) denote the exterior of the unit circle in the plane. Accord- 
ing to Douady and Hubbard, there is a unique analytic isomorphism @ that maps 
E to the exterior of the Mandelbrot set. The mapping @ takes positive reals to 
positive reals. This mapping is the uniformization of the exterior of the Mandel- 
brot set, or the exterior Riemann map. 

The importance of @ stems from the fact that the image under @ of the 
straight rays 8 = constant in E have dynamical significance. In the Mandelbrot 
set, we define the external ray with external angle 8, to be the @-image of 8 = 8,. It 
is known that an external ray whose angle 8, is rational actually "lands" on A. 
That is lim,, ,@(re2"''0) exists and is a unique point on the boundary of A. This 
c-value is called the landingpoint of the ray with angle 8,. 

For example, the ray with angle 0 lies on the real axis and lands on A? at the 
cusp of the main cardioid, namely c = 1/4. Also, the ray with angle 1/2 lies on 
the negative real axis and lands on A at the tip of the "tail" of A?, which can be 
shown to be c = -2. 

Consider now the interior of A?. The interior consists of infinitely many simply 
connected regions. A bulb of A? is a component of the interior of A? in which 
each c-value corresponds to a quadratic function that admits an attracting cycle. 
The period of this cycle is constant over each bulb. In many cases, a bulb is 
attached to a component of lower period at a unique point called the root point of 
the component. 

An important result of Douady and Hubbard is: 

Theorem 1. Suppose a bulb B consists of c-values for which the quadratic map has an 
attracting q-cycle. Then the root point of this bulb is the landingpoint of exactly 2 rays, 
and the angles of each of these rays have period q under doubling. 

Thus, the angles of the external rays of A? determine the ordering of the bulbs 
in A.For example, the large bulb directly to the left of the main cardioid is the 
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1/2 bulb, so two rays with period 2 under doubling must land there. Now the only 
angles with period 2 under doubling are 1/3 and 2/3, so these are the angles of 
the rays that land at the root point of B1/,. 

Now consider the 1/3 bulb atop the main cardioid. This bulb lies "between" the 
rays 0 and 1/3. There are only two angles between 0 and 1/3 that have period 3 
under doubling, namely 1/7 and 2/7, so these are the rays that land at the root 
point of B1/,. 

The 2/5 bulb lies between the 1/3 and 1/2 bulbs. Hence the rays that land at 
c(2/5) must have period 5 under doubling and lie between 2/7 and 1/3. The only 
angles that have this property are 9/31 and 10/31, so these rays must land at 
c(2/5); see Figure 6. 

h 

Figure 6. Rays landing on the Mandelbrot set. 

These ideas allow us to measure the "largeness" or "smallness" of portions of 
the Mandelbrot set. Suppose we have two rays with angles 0- and 0, that both 
land at a point c ,  in the boundary of A. 

Then, by the isomorphism @, all rays with angles between 0- and 0, must 
approach the component of M - {c.} cut off by 0- and 0,. (It is not known that 
all such rays actually land on .&!'-indeed, this is the major open conjecture about 

A?.) Thus it is natural to measure the size of this portion of A? by the length of the 
interval [ 0-, 0, I. 

The root point of the p/q bulb of .&!' divides .&!' into two sets. The component 
containing the p /q  bulb is called the p /q  limb. We can then measure the size of 
the p/q limb if we know the external rays that land on the root point of the p/q 
bulb. We compute these rays in the next section. 
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6. RAYS LANDING ON THE p/q BULB. In order to make the notion of "large" 
or "small" precise in the statement of the folk theorems, we need a way to 
determine the angles of the rays landing at the root point of B,,,. We denote the 

' ,  A 

angles of these two rays in binary by l , (p/q),  where 1-(p/q) < I+(p/q) .  We 
call 1 - (p/q) the lower angle of BPI, and 1 + (p/q) the upper angle. 

As we will see, 1 +(p/q) is a string of q digits (0 or 1) and so 1 ,  (p/q) denotes 
the infinite repeating sequence whose basic block is 1 +(p/q). Douady and Hub- 
bard [6] have a geometric method involving Julia sets 70 determine these angles. 
Our method is more combinatorial and resembles algorithms due to Atela [I], 
LaVaurs [lo], and Lau and Schleicher [Ill. 

To describe this algorithm, let Rp/, denote rotation of the unit circle through 
p/q turns, i.e., 

R ( 0 )  = e2ri(o+~/q).
P/ ,  

We consider the itineraries of points in the unit circle under R using two different 
partitions of the circle. 

The lower partition of the circle is defined as follows. Let I;= (010 < 0 5 
1 -p/q} and I; = {el1 -p/q < 0 5 1). The boundary point 0 belongs to I; and 
-p/q = 1 -p/q belongs to I;. We then define s - (p /q )  to be the itinerary of 

p/q under Rp/, relative to this partition. We call the basic repeating block of this 
itinerary, s-(p/q), the lower itinerary ofp/q. That is, s-(p/q) = s, . . . s, where sj 
is either 0 or 1 and the digit sj is 0 if and only if RA/:(p/q) E I;. Otherwise, 
Sj = 1. 

For example, s-(1/3) = 001 since 

and the orbit + + 1 + 4+ ... lies in I;, I;, I,, respectively. 
Similarly, s-(2/5) = 01001 since 

I; = (0,3/5], I; = (3/5,1], 

and the orbit is 2 + + + + 0 + $ + ... . 
We also define the upper partition I; and I: as follows: 

The upper itinerary ofp/q, s+(p/q), is then the repeating block of the itinerary of 
p/q relative to this partition. Note that It and I: differ from I; and I; only at 
the endpoints. 

For example, s+(1/3) = 010 since the orbit is + 5+ 0 ... and 

This orbit starts in I:, hops to I:, and then returns to I; before cycling. For 2/5, 
we have 

It = [0, 3/5), 1: = [3/5,1) 

and s+(2/5) = 01010. 
The following theorem provides an algorithm for computing the angles of rays 

landing at c(p/q). For a proof, we refer to [5] and [6]. 

Theorem 2. The rays I+(p/q) landing at the root point c(p/q) of the p/q bulb are 

given by 8-( p/q) and s + (  p/q). 
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Note that s , ( p / q )  differ only in their last two digits (provided q 2 2). Indeed 
we may write 

s-  ( p / q )  = s, . . . sq-,o 1 

s + ( p / q )  = S 1 . .  . sq-,1 0 

The reason for this is that the upper and lower itineraries are the same except at 
~ ; / i ( p / q )= - p / q  and ~ ; / i ( p / q )= 0,  which form the endpoints of the two 
partitions of the circle. 

We now define the size of the p / q  limb to be the length of the interval 
[ s - ( p / q ) ,  s + ( p / q ) ] .  That is, the size of the p / q  limb is given by the number of 
external rays that approach this limb. We may compute size of these bulbs 
explicitly by using the fact that s + ( p / q )  differ only in the last two digits. -

Theorem 3. The size of the p / q  limb is l / (24  - 1). That is 

Proof We write the binary expansion of the difference in the form 

As we see in Figure 7, the visual size of the bulbs does indeed correspond to the 
size as defined above. 

7. THE SIZE OF LIMBS AND THE FAREY TREE. In this section we relate the 
size of a p / q  limb to the size of the limbs corresponding to the Farey parents of 
p / q .  The following proposition relates the upper and lower itineraries of p / q  and 
its Farey parents. 

Proposition 1. Suppose a / P  and y /S  are the Farey parents of p / q  and that 
0 < a / P  < y /S  < 1. Then the lower itineraly s - ( p / q )  consists of the first q digits of 
the upper angle s+ ( a / p )  of the smaller parent, and the upper itineraly s + ( p / q )  
consists of the first q digits of the lower angle s-  (y / S )  of the largerparent. 

Proof We consider only s + ( p / q ) ; the proof for s - ( p / q )  is similar. 
From ( I ) ,  we have 

Y P - 1 

6 q q s '  
Consider the orbits of p / q  and y /S  relative to the respective rotations R,/,  and 
R,/,. Since y /S  rotates faster than p / q ,  the distance between these orbits 
advances by l / q S  at each iteration. We thus have 
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s.c 
Figure 7. Size of the 2/5 and 1/3 limbs of k. 

It follows that R ; / , ( ~ / ~ )lies within 1 /S  units of ~ i , , (y / ~ )provided j < q - 1. 
Since points on the orbit of y /S  under R,/, lie exactly 1 /S  units apart on the 
circle, it follows that the first q - 1 entries in the itineraries of p / q  and y/S are 
the same, provided we choose the lower itinerary for y/S and the upper itinerary 
for p/q .  The reason for this is that the orbit of y/S lies ahead of that of p / q  in 
the counterclockwise direction, but by no more than 1/S  units. Choosing the 
upper itinerary for p / q  and the lower for y/S forces the corresponding digits to 
be the same. 

When j = q - 1, we have R,/ , (p/q)  = 0 and 

Hence 

Therefore the qth digit in s + ( p / q )is 0 and so is the qth digit of y /S ,  as long as 
y / s  f 1. 

If one of the Farey parents is 0 or 1, we must modify Proposition 1. 

Proposition 2. Suppose that 0 is a Farey parent o fp /q .  Then the q digits in the lower 
itinerary of p / q  are s - ( p / q )  = 0 .  . .01. If 1 is a Farey parent of p / q  then s + ( p / q )  
= 1. . .10 .  
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Proo$ For s-(p/q),  we first note that, since 0/1 is a Farey parent, we must have 
p = 1. Thus, s - (p /q)  is given by the itinerary of l /q  under counterclockwise 
rotation by l / q  units. We therefore have 

( q  - l ) /q]  , IF= ( ( q  - I] 

It follows that the first q - 1 digits of s-( l /q)  are 0, and the last digit is 1. If a 
Farey parent is 1/1, the proof is similar, since in this case p = q - 1. w 

We now complete the proof of one of the folk theorems mentioned in the 
introduction. 

Theorem 4. Suppose a/p and y/6 are the Farey parents of p /q  and that 0 5 a/p 
< y/6 I 1. Then the size of the p /q  limb is larger than the size of any other limb 
between the a/p and y/6 limbs. 

Proo$ Assume first that neither parent is 0 or 1. Propositions 1and 2 ensure that 
s- (p/q)  and s + ( a/P ) agree in their first q digits. Using these binary representa- 
tions, we have 

Similarly 

This implies that the arc of rays between the p /q  limb and either of its parents' 
limbs has length no larger than 1/24. Thus any limb between them has size smaller 
than 1/24. 

From (2), we know that 

As this quantity is larger than 1/24, it follows that the p/q limb attracts the 
largest number of rays between its two parents. 

If one of the parents of l / q  is 0, then the size of the l / q  bulb is again 
l/(2q - I), while the gap between 0 and s -  ( p / q )  = 0 . .  .O1 is also l/(2q - 1). 
But then any limb between the l /q  limb and the cusp of the cardioid must have 
size strictly smaller than l/(2q - I), again showing that the l /q  limb is the largest. 
The case of Farey parent 1is handled similarly. w 

8. THE FIBONACCI SEQUENCE. Theorem 4 shows that the Fibonacci sequence 
appears in the Mandelbrot set. As we have seen in Figures 4 and 5, the largest 
bulb between the 1/2 and 1/3 bulb is the 2/5 bulb, and the largest between the 
1/3 and 2/5 bulbs is the 3/8 bulb. This progression continues, with the numera- 
tors (and denominators) forming the Fibonacci sequence. For example, we next 
have 

The corresponding bulbs are shown in Figure 8. 
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Figure 8. 3 €8 $ = &. 

This sequence of bulbs actually converges to a single point on the boundary of 
the main cardioid. At this particular c-value, (2, is known to have a fixed point zo 
with Q1,(z0)= e2wis9where e is related to the golden ratio and hence is highly 
irrational. The dynamics of complex functions near such fixed points is the subject 
of the Fields' Medal work of J.-C. Yoccoz [12]. 

9. CONCLUSION. The technique of measuring the size of certain portions of the 
Mandelbrot set by the length of the interval of rays that land on that portion 
provides justification for other folk theorems involving the size of A. For example, 
this technique is used to identify the p/q bulb using the "lengths" of the spokes in 
its antenna. Once we know these rays, we can easily compute the lengths of the 
various spokes. 

For example, it can be shown that the two rays that land at the junction point of 
the antenna adjacent to the principal spoke are given by s - s ,  and s + y ,  where we 
have dropped the p/q for clarity. These two rays are therefore given by preperi- 
odic binary sequences that begin to repeat only after the qth entry. Thus, the vast 
majority of rays that land on the p/q limb actually approach the spokes of the 
antenna. For we have the following ordering of the rays landing on the p/q bulb: 

s - < s -s+  < s+s - < s + .  
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It is easy to check that the length of the arc of rays approaching the antenna 
between s-cand s+yis 

1 2 
24-1 24(24-1)  ' 

This-number is much larger (for large q )  than the length of the arc between s and 
s-s + or between <and s + s , each of which has length 

We can also use the two rays separating the principal spoke from the rest of the 
antenna to determine a list of the q rays that land on the junction point. Then we 
can determine that the shortest is located p/q turns in the counterclockwise 
direction from the principal spoke. See [5] for details. 
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