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10730. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Fix an 
integer n 2 2. Determine the largest constant C ( n )such that 

C (xi - xi)  
2 

2 C ( n ) . min - x i )  
2 

l i i < nl i i < j i n  

for all real numbers X I  < x2 < . . . < Xn. 

10731. Proposed by M. J. Pelling, London, England. Let A be an n-by-n real symmetric ma- 
trix, and consider the quadratic form Q ( x )  = x AX for x E Rn. Let C be the cube [- 1 ,  l In. 
Prove that max,,c Q ( x )is at least as large as the sum of the positive real eigenvalues of A. 

SOLUTIONS 

Connected Sets of Periodic Functions 

10434 [1995, 1701. Proposed by Daniel Gofinet, Saint ~ t i enne ,  France. Let P be the set 
of nonconstant periodic mappings from R to R ,  endowed with the topology derived from 
the supremum norm. Find the components of P.  

Composite solution I by Kiran S. Kedlaya, Massachusetts Institute of Technology, Cam- 
bridge, MA, Kenneth Schilling, University of Michigan, Flint, MI, and Arlo W Schurle, 
University of Guam, Mangilao, Guam. For any function f :  R -+R,define 1 1  f 1 1  to be 
sup{ If ( X I [ :  x E R), which is taken to be oo when the set of values o f f  is unbounded. 

We first show that f and g are in different components of P if 1 1  f - g 1 1  = co. Let 
Bg = { k E P :  Ilk - g 1 1  < co).By the triangle inequality Bg is an open set, and if h $ Bg,  
then the triangle inequality again shows that { z :  llz - hll < 1 )  f l  Bs = 0. Consequently 
Bg is both open and closed, and so the component of P containing any given g E P must 
lie in Bg. 

Conversely, if f - g is bounded for f ,  g E P ,  then there is an arc in P joining f 
to g. First, suppose that f and g have a common period p. The standard path k t ( x )  = 
( 1  - t )  f ( x )  + t g ( x )  for 0 5 t 5 1 consists of functions having p as a period, and since 
1 1  f - gll is finite, kt depends continuously on t .  There is a danger that some k t ( x )  is a 
constant function, but this can happen only if f is an affine function of g, that is, there are 
constants A and B with f = Ag + B. In this case, the function h ( x )  that is equal to f ( x )  
except at integer multiples of p, where it is f ( x )  + 1 ,  is at bounded distance from both f 
and g and is not an affine function of either. A path from f to g can be obtained by taking 
the standard path from f to h followed by the standard path from h to g. 

Suppose now that f and g have no common period. Let r be a period of f and let s be 
a period of g. We wish to construct h that has both r and s as periods such that 1 1  f - hll 
(and hence also llg - h 1 1 )  is finite. To do this, pick an arbitrary set of coset representatives 
for R / ( r Z  + s Z ) ,define h to agree with f at these values, and extend by periodicity. Then 
for any x ,  let x = y + r m  + sn,  where y represents the coset containing x .  Then 

Ih(x) - f (x)l  = I f ( Y )  - f (Y + sn>l 

= I ~ ( Y ) - g ( y ) + g ( y  + s n )  - f ( y  +sn)I 5 2 I l f -gII 

Since f and h have common period r and I l  f - h 1 1  is finite, there is a path from f to h ,  and 
since h and g have common period s and I l  h - gll is finite, there is a path from h to g. 

Composite solution 11by Fredric D. Ancel, University of Wisconsin, Milwaukee, WI, Phil 
Bowers and John Bryant, The Florida State University, Tallahassee, FL, and the proposel: 
We assume that "mapping" means "continuous function". Then two functions in P belong 
to the same component if and only if they have commensurate periods. As in solution I, the 
components are path-components. 
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