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10730. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Fix an
integer n > 2. Determine the largest constant C () such that

2 . 2
E (x —x)" = C(n) - min (xi11 —x;)
gt 1<i<n
I<i<j<n
for all real numbers x| < x3 < -+ < xp.

10731. Proposed by M. J. Pelling, London, England. Let A be an n-by-n real symmetric ma-
trix, and consider the quadratic form Q(x) = xT Ax for x € R”. Let C be the cube [—1, 1]".
Prove that maxyecc Q(x) is at least as large as the sum of the positive real eigenvalues of A.

SOLUTIONS

Connected Sets of Periodic Functions

10434 [1995, 170]. Proposed by Daniel Goffinet, Saint Etienne, France. Let P be the set
of nonconstant periodic mappings from R to R, endowed with the topology derived from
the supremum norm. Find the components of P.

Composite solution I by Kiran S. Kedlaya, Massachusetts Institute of Technology, Cam-
bridge, MA, Kenneth Schilling, University of Michigan, Flint, MI, and Arlo W. Schurle,
University of Guam, Mangilao, Guam. For any function f: R — R, define | f]| to be
sup{ | f(x)|: x € R}, which is taken to be oo when the set of values of f is unbounded.

We first show that f and g are in different components of P if | f — gl| = oo. Let
By = {k € P: ||k — gll < oc}. By the triangle inequality B, is an open set, and if & ¢ By,
then the triangle inequality again shows that {z: ||z — k|| < 1} N B; = @. Consequently
By is both open and closed, and so the component of P containing any given g € P must
lie in Bg.

Conversely, if f — g is bounded for f, g € P, then there is an arc in P joining f
to g. First, suppose that f and g have a common period p. The standard path k;(x) =
(1 —=1)f(x)+tg(x) for 0 <t < 1 consists of functions having p as a period, and since
IIf — gll is finite, k; depends continuously on ¢. There is a danger that some k;(x) is a
constant function, but this can happen only if f is an affine function of g, that is, there are
constants A and B with f = Ag + B. In this case, the function A (x) that is equal to f(x)
except at integer multiples of p, where it is f(x) + 1, is at bounded distance from both f
and g and is not an affine function of either. A path from f to g can be obtained by taking
the standard path from f to & followed by the standard path from 4 to g.

Suppose now that f and g have no common period. Let r be a period of f and let s be
a period of g. We wish to construct & that has both r and s as periods such that || f — k||
(and hence also ||g — £||) is finite. To do this, pick an arbitrary set of coset representatives
for R/(rZ + sZ), define h to agree with f at these values, and extend by periodicity. Then
for any x, let x = y 4 rm + sn, where y represents the coset containing x. Then

|h(x) = f) =1f) = f(y+sn)l
=|fO)—g+egy+sn)— f(y+sn)|<2|f -zl

Since f and h have common period r and || f — £ is finite, there is a path from f to k, and
since h and g have common period s and ||k — g|| is finite, there is a path from 4 to g.

Composite solution II by Fredric D. Ancel, University of Wisconsin, Milwaukee, WI, Phil
Bowers and John Bryant, The Florida State University, Tallahassee, FL, and the proposer.
We assume that “mapping” means “continuous function”. Then two functions in P belong
to the same component if and only if they have commensurate periods. As in solution I, the
components are path-components.
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Given f € P with period 27rn, we form a path from f(x) to sinx via the homotopy
he(x) = (1=1) f(x)+¢sinx for0 < ¢ < 1. Since [|hs — k|| < (I fIl + 1) |s — ¢, the map
t > h is continuous from [0, 1] to the space of all functions from R to R with the topology
derived from the supremum norm. Each 4, has 2n7 as a period. This gives the desired path
in P if no h,(x) is constant, i.e., unless f(x) = Asinx + B with A < 0. For such fx),
the path k;(x) = (1 —¢) f(x) — ¢ sinx connects f(x) to —sinx = sin(x + 7). The path
ny(x) = sin(x + (1 — t)7r) then connects —sin x to sinx in P. The continuity of t > n;,
follows from the mean value theorem. If f and g have commensurate periods, say both are
a multiple of p, then there are continuous paths in P connecting f(x) to sin(2wx/p) and
g(x) to sin(2w x/ p), hence there is a path from f to g.

For a fixed real number p, let C,, denote the set of functions in P whose period is a rational
multiple of p. We now show that C, is an open subset of P. Choose f € Cp. Since f is not
constant, there are real numbers x and y such that f(x) < f(y). Sete = ( fO) — fx) ) /3.
Weshowthatg € Pand | f — g|| < eimplies g € C,,. If not, then thereis g with || f — g|| <
€ such that the period of g, say g, is an irrational multiple of p. Since f is continuous, there is
d such that f takes the interval (y — &, y + 4) into the interval (f(y) — €, f(y) + €). Since
f € Cp, f also takes the interval (y —mp — 8,y —mp + 8) into (f(y) —¢€, f(y) +¢€)
for each integer m. Since ||f — gll < €, g takes each (y —mp — 8,y — mp + §) into
(f(y) — 2¢, f(y) + 2¢). Since p/q is irrational, the numbers mp + nq for integers m and
n are dense in R, so there are integers m and n such thatmp+nqg € (y —x — 8,y — x + 8),
which gives x + ng € (y —mp—8,y —mp+38). Thus, g(x +nq) < f(x) + ¢ =
f(y) —2€ < g(x +nq), acontradiction. This completes the proof that C}, is an open subset
of P.

Since the sets C), partition P into connected open sets, each set C;, is a component of P.

The Plane Covered by Disks

10440 [1995, 273]. Proposed by Marius Cavachi, Constanta, Romania. Show that the
Euclidean plane cannot be covered with circular disks having mutually disjoint interiors.

Solution I by Sam Northshield, SUNY, Plattsburgh, NY. We show that Rk (k > 2) cannot be
covered by metric balls having mutually disjoint interiors.

Note that every set of balls with disjoint interiors is countable, since each contains a
different point with rational coordinates. Let {B,: n € N} be a set of closed metric balls
in R¥ (k > 2) with mutually disjoint interiors. A point of intersection of two of the B, is
called an intersection point. Since the intersection of two distinct B, has at most one point,
there are only countably many intersection points. Hence we may choose a straight line
segment y with its endpoints in the interiors of two distinct balls and such that y avoids all
intersection points (here is where we need k > 2). Let C be the set of points of y that are not
in the interior of any B,. Then C is closed and nonempty. Furthermore, any neighborhood
of point x € C must contain another point of C; otherwise x would be an intersection point.
Hence C is perfect, and thus uncountable. Now, for any », the segment y intersects 3 B, in
at most two points, so there is x € C not in any B,. It follows that | J B, # R*.

Solution II by Simeon T. Stefanov, Sofia, Bulgaria. Suppose the contrary. As in Solution
I, there are only countably many intersection points. Let L be a line that avoids these
points, and consider the family ¥ = {L N B,: n € N}, a countable cover of L with disjoint
closed bounded intervals. To see that no such cover is possible, construct a nested family
of compact intervals A, C L such that A, N B, = @, but A, meets at least two intervals in
F. Then () A, is nonempty, but no point of this intersection belongs to any set in F.

Editorial comment. Victor Klee noted that the proof that there are only countably many
intersection points requires only that the B, be rotund (i.e., strictly convex). His solution
followed Solution II, with the last part traced back to W. Sierpiriski, Un théoré¢me sur les

364 PROBLEMS AND SOLUTIONS [April



