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Solution by the proposel: If Bi is the midpoint of Ai+lAi+z for i = 1 , 2 , 3 ,  then triangles 
A1A2A3and BlB2Bg are similar, so IBlB2I = (1/2)IAlAzl,  IB2B31 = (1/2)IA2AgI,and 
IBgBlI = (1/2)1A3AlI. Hence 

and similarly for the other conditions of both parts. 
(a) We prove that for any triangle B1 B2B3 there exists exactly one triangle A1 A2A3 such that 
IAiBi+l I + IBiBi+l I = IAi Bi+zI + IBiBi+2I for i = 1 ,2 ,  3. This implies our assertion. Fix 
a triangle B1 B2B3, and suppose that for a triangle A1A2A3the conditions are satisfied. Let 
( i ,j ,  k) be a permutation of ( 1 , 2 , 3 ) .  Consider the hyperbola with foci Bj and Bk passing 
through Bi . Since-IAi Bj I + I Bi Bj I = [ A i  Bk I + 1 Bi Bk I , the hyperbola passes through Ai . 
Write hi for the part of the branch of the hyperbola passing through Ai that is on the opposite 
side of the line Bj Bk from Bi. Since Bj and Bk are the foci of the hyperbola, hi is entirely 
contained in the union of,all lines joining Ai and some point on the segment Bj Bk. 

Now suppose that A is any point on hl different from A1. (This A is a candidate for 
the vertex A 1 in a new triangle satisfying the conditions.) If A is inside triangle B2A B3, 
then the line from A through B2 intersects hg in a point P that is on the opposite side of 
the line A2A3 from A l ,  and if A is outside of B2A1 Bg then P is on the same side of A2A3 
as A1. (Point P is the candidate for point A3 of the new triangle.) The same holds for the 
intersection Q of the line A B3 with h2 (the candidate for A2 of the new triangle). Therefore, 
the line segment P Q does not pass through B1. We conclude that A cannot be a vertex of a 
triangle that satisfies our requirements. A similar argument shows that no point A outside 
triangle B2A1 B3 can be a vertex of a triangle that satisfies our requirements. Thus A 1 A2A3 
is the only triangle for which the conditions hold. 
(b) Let ak = (1/2)1AiAj1 ,  bk = IBi Bj 1 ,  and x; = aj - IAi B; 1 ,  where ( i ,j ,  k) is an even 
permutation of ( 1 , 2 , 3 ) .By hypothesis, ai +xi +ak - xk = bi +bk. Adding two of these 
equations and subtracting the third yields bi = ai - xj + xk, so 

By the law of cosines we obtain b! = (aj+~ j + )(ak~-xk )2-2(aj +xj) (ak-x k )cos Ai.  
Since cos Ai = a: +a; - a!/2ajak we get after simple transformations 

Let zi = xi /a i .  Comparing expressions ( 1 )  and ( 2 )for b:, we get 

If one of the zi's is 0, then all of them vanish. If they are all nonzero, then dividing by z j z k  

and adding all three equalities we get a1 +a2 +a3 = 0,which is evidently false. Therefore, 
all the xi 's  vanish and the assertion is proved. 

Solved also by M. Vowe (Switzerland) and GCHQ Problems Group (U. K.) 
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where q ( j )  is the number of ones in the binary expansion of the nonnegative integer j .  
(b) Use part (a) to infer that there is a positive integer s = s(k) such that every integer n 
is expressible in the form n = clxf + c2X; + . . . + E,X$ in infinitely many ways, where 
~i = k 1  for 1 5 i 5 s and where x l ,  x2, . . . , x, are distinct positive integers. 

Solution Itopart (a) by David Callan, University of Wisconsin, Madison, WI, With n = k- 1, 
equating coefficients of y reduces the proposed identity to 

Let S ( j )  denote the set of positions containing 1 in the binary representation of j ,  so that, 
for example, S(13) = S((1101)2) = (1,3,4}).  Write j -< k when S ( j )  g S(k). Consider 
a set of boxes labeled 1, . . . ,2"  - 1. For 0 5 i 5 n - 1, let Gi be the set of boxes with 
labels 2', . . . ,2 '+ '  - 1. Note that IGi I = 2' for i 2 0. 

Let f ( j )  be the number of placements of r distinguishable balls into UiESCi)Gi .  Clearly 
f ( j )  = j r .  Let g ( j )  be the number of such placements in which, for each i E S ( j ) ,  at 
least one ball is in at least one box in Gi .  By the Inclusion-Exclusion Principle, g(k) = 

x,i5k(-~)v(k)-v(,i)f ( j ) .  In particular, g(2" - 1) = xE: ( - I )~ -v ( .~ )j r .  
Since S(2n - 1) = (1, . . . , n}, the distributions counted by g(2n - 1) are those with all 

n groups nonempty. When r < n ,  there are none. When r = n, one of the 2' boxes in Gi 
is used, for each i. When r = n + 1, we distribute n balls and then one more, dividing by 
2 to eliminate overcounting. Thus both sides of the identity equal g(2n - 1). 

Solution II by Richard Stong, Rice University, Houston, 7X. 
(a) Letting A, f (y) = f (y + r )  -f (y), the left side of the identity is A 1 A2A4 . . . A2k-2 y k . 
If f is a polynomial of degree n with leading coefficient c, then A, f is a polynomial of 
degree n -1 with leading coefficient crn.  Since we have applied k -1 such operators, the left 
side of the identity is a polynomial of degree 1 with leading coefficient k!2°+1t"'t(k-2) = 
k!~(k-l)(k-2)/2, 

~ i n c e q ( 2 ~ - ~ - 1 - i )=k-1-q( i ) , thetermsfor j  = iand j =2k-1-1- i in thesum 
exactly cancel if y = -(2k-' - 1)/2. Thus the left side of the identity is the polynomial of 
degree 1 with leading coefficient k!2(k-1)(k-2)/2 that vanishes at y = -(2k-1 - 1)/2. This 
agrees with the right side. 
(b) If k = 1, then s = 3 suffices, because the identities n = (n + 2 + m) - (1 + m) - 1 and 
n = (m + 2 + n) - (m + 1 - n) - (1 - n) give suitable representations for all m 2 1 in 
the cases n > 0 and n < 0, respectively. 

Now consider k > 2. Let M = k!2(k-1)(k-2)/2, and let s(k) = M + 2k-1. Given 
any integer n,  choose integers q and r such that n = (2k-1 - 1)M/2 + Mq + r ,  where 
0 5 r < M. Let X I ,  . . . , xr be multiples of M, and let xr+l,  . . . , XM be numbers congruent 
to 1 modulo M. Now n + xElX: is congruent to (2k-1 - 1)M/2 modulo M.  Thus for 

some y we haven + xE1X: = M(y + (2k-1 - 1)/2). The identity in (a) now yields 

The numbers X I ,  . . . , XM were chosen arbitrarily subject to congruence conditions mod- 
ulo M ;  there are infinitely many such choices. By fixing x l ,  . . . , X M - ~  and making XM 

sufficiently large, we can ensure that y exceeds XM, since k 2 2. Thus we have infinitely 
many choices in which X I ,  . . . , XM,  y, y + 1,  . . . , y + 2'-' - 1 are distinct, as desired. 

Solved also by K. McInturff, J .  H. Lindsey 11, GCHQ Problems Group (U. K.), R.  J. Chapman (U. K.), and the proposers. Part (a) 
solved also by D. Beckwith. 
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