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A Supremum of Sine Differences 

10604 [1997,567]. Proposed by Joseph Rosenblatt, University of Illinois, Urbana, IL. 
(a) Determine positive constants c and C such that if 0 < a < b then 

(b)* What are the largest constant c and smallest constant C such that (a) holds whenever 

O < a < b ?  

Solution of part (a) by Thomas Hermann, SDRC, Milford, OH. We may take c = 2/n and 

C = 4. To see this, let p(x) = sinxlx, h = a l b ,  and ~ ( h ,  p(hx))/(l  - A).
x)  = (p(x) -
The problem is to find positive lower and upper bounds for M(h) = sup,,o Ip(h, x) 1. Since 
Ip(x)l 5 1 for all x, 

I P ( ~ ? x ) I5 -1 - h -
1 4  (1) 

when 0 < h p 112. By the Mean Value Theorem, there is a y E [Ax, x], such that 
F(h,  x)lx = p1(y). Now xv1(y) = (xly)(cosy - P(Y)), so 

when $ 5 h < 1. Combining (1) and (2), we obtain M(h) p 4 for all h in (0, 1). 
To get a lower bound, observe that ~ ( h ,  = sin(hn)/ (h(1 - = ~ ( 1- h,  n ) ,  so n )  h)n) 

it is enough to consider the case when h E (0, 1/21, Since p(x) is decreasing on (0, n/2], 
p(h,  n )  2 (1/(1 - A)) (sin(n/2)/(n/2)) 2 2/n.  Therefore 2/n  5 M(h) p 4. 

Editorial comment. For part (b), John H. Lindsey I1 and the GCHQ Problems Group in- 
dependently computed that the largest value for c is approximately 1.0631036 and the 
smallest value for C is approximately 1.3805662. Lindsey used Maple to search for these 
values and used estimates on derivatives to prove that the optimal value of C satisfies 
1.380566167 5 C p 1.380577012. 

Part (a) also solved by R. J. Chapman (U.K.), T. Hermann, J. H, Lindsey 11, GCHQ Problems Group (U.K.), and the proposer. 

A Convergent Series 

10657 [1998, 3661. Proposed by Jovan VukmiroviC, University of Belgrade, Belgrade, 
Yugoslavia. Let 4 be a strictly increasing function from (0, co) onto (0, co). Prove that if 
Cgl l/(n4-l(n)) converges, then Cgl$(n)xn converges for 1x1 < 1. 

Solution by Kenneth Schilling, University of Michigan, Flint, MI. For x > 1, 

Thus, since 4 is increasing, we have 

By hypothesis, this expression converges to 0 as x -+ co. Hence lim,,, In XI$-' (x) = 0. 
Since 4(x) + co as x -+ co, we get lim,,, In4(x)/x = 0. Exponentiation yields 
lirn,,, ( 4  (x)) 'Ix = 1. Thus the power series converges for Ix 1 < 1 by the root test. 

Solved also by S. Amghibech (France), I. Arregui, G. L. Body (U. K.), D. Bonvein (Canada), D. Bradley (Canada), K. Dale & I. 
Skau (Norway), J. Fitch, K. Ford, G. L. Isaacs, P. Lang, J. H. Lindsey 11, A. Stenger, T. V. Trif (Romania), T. Trimble, R. Vermes 
(Canada), C. Y. Yildirim (Turkey), GCHQ Problems Group (U. K.), and the proposer. 
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