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Introduction to Metric-Preserving Functions 


Paul Corazza 

1. INTRODUCTION. Under what conditions on a function f :[O, a )  + [0, a )  is it 
the case that for each metric space (X,d), f 0 d is still a metric, and, moreover, d 
and f 0 d are equivalent metrics? 

It is well-known that for any metric d, d/( l  + d) is a (bounded) metric that is 
equivalent to d. On the other hand, d/( l  + d2)  need not be a metric; see 
Proposition 2.7. We call f : [O, a )  + [O, a )  metric-preserving (respectively, strongly 
metric-preserving) if for all metric spaces (X,d), f 0 d is a metric (respectively, is a 
metric that is topologically equivalent to d). 

Although the first reference in the literature to the notion of metric-preserving 
functions seems to be [19], the first detailed study of these functions was by 
Sreenivasan in 1947 [16]. Kelley's classic text in general topology mentions some of 
Sreenivasan's results in an exercise [14, p. 1311: 

Exercise (Kelley). Suppose f :[0, a )  + [0, a )  is continuous, nondecreasing, and 
subadditive (f(x + y) 5 f(x) + f(y) for all x, y). Suppose also that f-'(0) = (01. 
Then f is strongly metric-preserving. 

In the past two decades, a significant literature has developed on the subject of 
metric-preserving functions. The purpose of this paper is to introduce some of the 
results and techniques of the field to a broader mathematical audience. 

We begin our study of metric-preserving functions in the next section, where we 
build tools to understand these functions and consider some revealing examples. 
Section 3 examines the important relationship between strongly metric-preserving 
functions and continuity. In the final section, we survey some of the results on 
differentiability in the context of metric-preserving functions. Many of the results 
discussed here have been garnered from papers that have appeared in other 
languages and in journals unfamiliar to the author; special thanks go to Jozef 
Dobog for his tremendous help in making so many of these papers available to me. 
Space constraints prevent me from discussing many avenues of research related to 
metric-preserving functions that have been pursued by various authors; see [8] for 
an excellent list of references. 

An interesting application of metric-preserving functions was discovered by JBza 
in 1956, long before the subject had matured [13]. It is now well-known that there 
are complete nowhere discrete metric spaces that have a nested sequence of closed 
balls with empty intersection (of course the diameters of such balls cannot tend to 
0). JBza observed that the real line could be topologized to obtain such a space, 
using a metric-preserving function; in particular, he showed that (R, f 0 e) has the 
required property if e is the usual metric on R, and f is the metric-preserving 
function defined by 
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We prove that f is metric-preserving in the next section; see [lo] for technical 
refinements of this result. 

2. METRIC-PRESERVING FUNCTIONS. A metric space is a set X together 
with a function d: X x X + [0,a )  satisfying the following three conditions: 

(MI) For all x, y E X, d(x, y) = 0 if and only if x =y; 
(M2) For all x, y E X, d(x, y) = d(y, x); and 
(M3) For all x, y, z E X, d(x, y) + d(y, z )  2 d(x, z). 

If a real-valued function f defined on a set S c_ R is metric-preserving, then S 
must include [O,m), its range must lie in [O,a), and f-'(0) = (0); we call such 
functions amenable. Since the values that an amenable function may have at 
negative reals have no bearing on whether the function is metric-preserving, we 
further require that all amenable functions have domain precisely [0, 4. 

The next proposition identifies a basic property of all metric-preserving func-
tions: 

Proposition 2.1. Iffis metric-preserving, then f is subadditive. 

Proof Let a ,  b E [0,a )  and let d be the usual metric on R. Then 

f ( a )  + f ( b )  = ( fod ) (O ,a )  + ( f  ~ d ) ( a , a+ b) 
> ( f o d ) ( O , a + b )  = f ( a + b ) .  

Terpe used the subadditivity criterion to show that a fairly broad class of 
functions is not metric-preserving. Before stating his result, we recall that a 
function f :[0,a )  + [0,a )  is convex on [0, c]  if 

whenever 0 5 x < y < z 5 c, where the graph of g is the line passing through 
(x, f(x)), (y, f(y)). Moreover, f is strictly convex if (2.1) holds when Iis replaced 
by < .  

Corollary 2.2 [IS]. Given f :[0,a )  + [0,a) ,  suppose that either 

(A) f is strict& convex on some interval including the origin and f(0) = 0, or 
(B) f is differentiableon (u, m) for some u 2 0 and lirn, ,,f '(x) = + a .  

Then f is not metric-preserving. 

Proof For (A), let c be a positive number for which f is strictly convex on [0, c]. 
Then f(c/2) < f(c)/2, whence f(c/2) + f(c/2) < f(c), which violates subadditiv-
ity. 

For (B), assume f is differentiable on (u, m), lirn, ,,f1(x> = +m, and f is 
metric-preserving. Let x, > u. Because f '  tends to + a ,  there is an r > 0 such that 
for all x > r, f l (x)  > f(x,)/x,. Pick x, > r and use the Mean Value Theorem to 
obtain a y E (x,, x, + x,) such that f l (y)  = (f(x, + x,) - f(x,))/x,. It follows 
that (f(xl + x,) - f(x,))/x, > f(x,)/x,, which violates subadditivity. 

Borsik and Dobo'; [I] give an example of a metric-preserving function f that is 
differentiable on (0, m) and satisfies lim sup,, ,f '(x) = +m, showing that the 
condition "lirn, ,,f '(x) = +a"in Corollary 2.2(B) is optimal. In the same paper, 
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the authors extend Corollary 2.2(A); we state their result in Theorem 3.5. The 
proof makes use of a symmetry between subadditive and convex amenable func- 
tions, which is developed in the following exercise: 

Exercise 1 i l l .  

(1) Suppose f :[O, m) + [O, 00) is subadditive. Show that for all positive integers 
n, f ( m )  Inf(x) and f(x/2") 2 f(x)/2" whenever x 2 0. 

(2) Suppose 	f is amenable and convex on [0, c]. Show that for all positive 
integers n, f(x/2") f(x)/2" whenever 0 4 x 4 c. 

While subadditivity is an important necessary condition, the function x/( l  + x2) 
shows that subadditivity is not sufficient for an amenable function to be metric- 
preserving. However, adding "nondecreasing" to subadditivity does yield a suffi- 
cient condition: 

Proposition 2.3. Suppose f is amenable, subadditive, and nondecreasing. Then f is 
metric-preserving. 

Proot Let (X,d )  be a metric space; we show f o d is a metric. Properties (MI) and 
(M2) are easy to check. For (M3), let x, y, z E X, and let a = d(x, y), b = d(y, z ) ,  
and c = d(x, z). It suffices to show that f(a) + f(b) 2 f(c). But 

f ( a )  + f ( b )  2 f ( a  + b) (subadditive) 

2 f ( c )  (nondecreasing) , 
as required. 

Terpe [18] noticed that if g : [O, m) + [O, m) is non-increasing, then l,"g(t) dt is 
subadditive, and thus by Proposition 2.3, it is metric-preserving. 

Another application of Proposition 2.3 involves concave functions: A function 
f :[0, m) + [0, a)is concave if for all x, y 2 0, 

Clearly, f is concave if and only if -f is convex on [0, c]  for every c > 0. Ger and 
Kuczma [12] showed that concave amenable functions must be nondecreasing; 
since such functions are easily shown to be subadditive, we can use Proposition 2.3 
again to conclude that they are also metric-preserving. 

Exercise 2. Use either Proposition 2.3 or the fact that concave amenable functions 
are always metric-preserving to show that log,(l + x), with a > 1, and xr, with 
0 < r I1, are metric-preserving. 

Another interesting example of a metric-preserving function was discovered by 
Dobog [7] who showed that the extended Cantor function (extended to have value 
1for all x > 1) is subadditive, and hence, by Proposition 2.3, is metric-preserving. 

Our examples so far have been both nondecreasing and continuous. A simple 
example of a discontinuous nondecreasing metric-preserving function is 

0 i f x = O  
1 otherwise. 
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Proposition 2.3 ensures that this function is metric-preserving. It is also possible to 
obtain a continuous, metric-preserving function that fails to be nondecreasing. In 
order to construct this and other related examples, we need the notion of a triangle 
triplet, which is used to characterize metric-preserving functions. This notion first 
appeared in Sreenivasan's early paper [16], though the terminology itself did not 
appear in the literature until [2]. 

Definition 2.4. A triangle triplet is a triple (a, b, c) of nonnegative reals for which 
a 5 b + c, b I a + c, and c Ia + b; equivalently, la - bl 5 c 5 a + b. 

Triangle triplets are precisely those triples of nonnegative reals that are of the 
form (d(x, y), d(y, z), d(x, z)) for some metric space (X,  d )  and some x, y, z E X. 
This observation follows from Proposition 2.5 and the proof of Proposition 2.6. 

Proposition 2.5. If ( X ,  d )  is a metric space and x, y, z E X ,  then 
(d(x, y), d(y, z), d(x, z)) is a triangle triplet. 

Proot This is immediate from the triangle inequality. 

Proposition 2.6 [21. Suppose f is amenable. Then the following are equivalent: 

(I) f is metric-preserving; 
(2) for each triangle triplet (a,  b, c), (f(a), f(b), f(c)) is a triangle triplet. 

Proof of (1) 3 (2). Given a triangle triplet (a,  b, c), let d be the usual metric on 
R2. A straightforward argument using elementary geometry shows that there are 
U, U,w E R~ such that d(u, v) = a,  d(u, w) = b, and d(u, w) = c. The result now 
follows from Proposition 2.5. 

Proof of (2) 3 (1). Given (X,d), we verify that f o d is a metric. Properties (MI) 
and (M2) are immediate. For (M3), use (2) and the fact that (d(x, y), d(y, z), 
d(x, z)) is always a triangle triplet for x, y, z E X. 

For metric-preserving functions f ,  we obtain from Proposition 2.6(2) the in-
equality 

by letting c = la - bl. 
Das [S] offers an alternative to Proposition 2.6(2) in his characterization of 

metric-preserving functions. A second alternative is the following: 

Exercise 3([16], [IS]). Show that Proposition 2.6(2) can be replaced by 

for each triangle triplet ( a ,  b, c ) ,  f ( a )  5 f ( b )  + f ( c ) .  P I )  

The proof of Proposition 2.6 shows that an amenable function f is metric-pre-
serving if and only if f 0 d is a metric on R2 whenever d is. DoboS gives an 
interesting example that shows R2 cannot be replaced by R [6]. He builds a 
variation f of the extended Cantor function that preserves metrics on R and has 
the property that lim inf,. ,f(x) = 0. The next proposition shows that such func-
tions cannot be metric-preserving: 
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Proposition 2.7. Supposef is metric-preserving. 

(1) For each x, > 0, there is an E > 0 such that f (x)  2 E for each x 2 x,. In 
particular, lim inf, > ,f(x) > 0, and (x, 0) is not a limit point of the graph off 
for any x > 0. 

(2) Iff is discontinuous at 0, there is some E > 0 such that f(x) > E for allx > 0. 

Proof of (1). If the assertion is false, there are x, > 0 and a sequence (x,), such 
that x, > x, for all n, and (f(x,)), -+ 0. Let n be such that f(x,) < f(xo)/2. 
Then (x,, x,, x,) is a triangle triplet, but (f(x,), f(x,), f(x,)) is not. 

Proof of (2). If (2) is false, it follows from (1) that there is a decreasing sequence 
(x,), such that (x,), -+ 0 and (f(x,)), -+ 0. By discontinuity at 0, there are 
E > 0 and a sequence (y,), converging to 0 such that f(y,) 2 E for all n. Now let 
n be such that x, < ~ / 2and let m be such that y, < x,. Then (x,, x,, y,) is a 
triangle triplet, but (f(x,), f(x,), f(y,)) is not. Y 

Proposition 2.7 shows that metric-preserving functions cannot have the x-axis as 
a horizontal asymptote; thus, the function x/( l  + x2) is not metric-preserving. 

Using Proposition 2.6, we can now exhibit quite a variety of discontinuous 
metric-preserving functions. We call an amenable function f tightly bounded if 
there exists a u > 0 such that f(x) E [u,2v] for all x > 0. 

Proposition 2.8 [21. Iff is amenable and tightly bounded, then f is metric-preserving. 

Proot Let u > 0 be such that f (x)  E [u,2u] for all x > 0, and let (a, b, c)  be a 
triangle triplet. Since the cases in which abc = 0 are trivial, we assume abc > 0. 
Then f(a) 4 2v = v + u If(b) + f(c), and Exercise 3 gives the desired conclu-
sion. 

Any amenable, tightly bounded function is necessarily discontinuous at 0. It 
follows that there are 2' tightly bounded, amenable functions (where c is the 
cardinality of R), so "most" metric-preserving functions are not continuous. 
A typical pathological example that one can construct with Proposition is the 
following: 

Proposition 2.9. There exists a metric-preservingfunction that is nowhere continuous 
and nowhere of bounded variation. 

Prooj5 Let {A, B} be a partition.of (0, m) such that both A and B are dense in 
(0, m). Define f :[0,m) + [0,m) by 

Since f is amenable and tightly bounded, it is metric-preserving; because of the 
choice of A and B, f has the required pathologies. 

The example given in Proposition 2.9 shows, in particular, that metric-preserv-
ing functions need not be nondecreasing. Pokorn? [IS]has isolated a fairly natural 
class of amenable functions for which all metric-preserving functions must be 
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nondecreasing: Define 

27 = {g :for some periodic h : [0, m) + [o,m) ,g ( x )  = x + h(x )  for all x 2 0). 

An example of a member of 27 is x + I sin(x)(.Pokorn? showed that for amenable 
members f of the class 27, f is metric-preserving if and only if f is nondecreasing 
and subadditive. 

Proposition 2.9 also shows that metric-preserving functions need not be of 
bounded variation on any interval. Nonetheless, most of our examples of metric-
preserving functions have this property. Terpe [17] formulated a sufficient condi-
tion, involving the notion of bounded gradient: Given r > 0, we say that a metric-
preserving function f is of r-bounded gradient at O if there is some h > O such that 
f(x)  Irx for all x E [0, h]. And we say that f is of boundedgradient at O if there is 
some r > O such that f is of r-bounded gradient at 0. 

Proposition 2.10 1171. Iffis metric-preserving and of bounded gradient at 0, then f is 
of bounded variation on each closed interval lying in [0, m). 

We postpone the proof of Proposition 2.10 until Section 4. There, we show that 
a metric-preserving function is of bounded gradient at O if and only if the 
derivative of f at O exists and is finite. We are establishing a global property of f 
(namely, bounded variation on each closed interval) based on the behavior of f at 
0. This theme reappears when we consider continuity in the next section. 

For the remainder of this section, we discuss techniques for building new 
metric-preserving functions from old and apply these to answer several natural 
questions: 

Q1. Can a metric-preserving function be strictly decreasing on an interval 
(a, m), a 2 O? 

Q2. Can a continuous metric-preserving function be strictly decreasing on an 
interval (a, m), a 2 O? 

Q3. Must every continuous, nondecreasing metric-preserving function be con-
cave? 

Q4. Must every discontinuous metric-preserving function be tightly bounded? 
Q5. Must every metric-preserving function that is continuous at O be continu-

ous? 

To answer Question Q1, we first show that every bounded function [O,a )  + 

[0, m) has an upward translation that is tightly bounded. For each f :[0,m) + [0,a) 
and each r > 0 we define 

Proposition 2.11. Suppose f :[0,m) + [0,a )  is bounded above. Then there is an 
r, > O such that Uf,,is metric-preservingfor all r 2 r,. 

Proof: Let r, be an upper bound for f and note that Uf,,is tightly bounded for all 
r 2 r,. 
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Example 2.12. A metnc-preseruing function that is strictly decreasing on (0, a) .  
Define 

Now, g = Uf, 1 where 

,,Tf, 

By Proposition 2.11, g is metric-preserving and is decreasing on (0, m). This 
example answers Question Q1. 

The next proposition provides a tool for answering Questions Q2 and Q3. 

Proposition 2.13 [2, Proposition 2.161. Suppose f is metnc-preseruing and suppose 
c, r > 0. Define Tf,,,. :[0, a )  + [0, a )  by 

Irx i f x ~ [ ~ , c )  

Tf,c ,r(x)= f ( x )  otherwise. 

Then Tf, ,, ,is metric-preserving if and only if f(c) = rc and If(x) - f(y)l I rlx - y I 
for all x, y E [c, a ) .  rn 

In [Ill ,  the authors generalize this result, replacing the function m in the 
defintion of Tf, ,, , by a concave metric-preserving function g :[O, m) + [0, a).  Let 

,denote the function defined from f and g in this way. As the authors of [ l l ]  
show, if Ix -y 1 I c implies (f(x) - f(y)l _< g(lx - y 1) for all x, y 2 c, then Tf,,,, 
is metric-preserving. 

Example 2.14. A metnc-preseruing, continuous function that is strictly decreasing on 
(1, m). Let g be as in Example 2.12. Define 

5x i f x ~ [ O , l ]
T(x )  = 

g ( x)  othenvise. 

Clearly, T is continuous and strictly decreasing on (1, m). Since T = T,, ,,,, Proposi- 
tion 2.13 ensures that T is metric-preserving. This example settles Question Q2. It 
also shows that continuous metric-preserving functions need not be nondecreasing. 

Example 2.15 [181. A continuous, nondecreasing, metric-preseruingfunction that is 
not concave. Define 

i f O _ < x < 2  
i f 2 _ < x < 3  
othenvise . 

Since f is tightly bounded, f is metric-preserving. Define 

if x E [O,1] 
= ( ) otherwise. 
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Clearly T is continuous and nondecreasing; T is not concave since 

when a = 1 and b = 3. Since T = Tf,,,Proposition 2.13 can be applied to show 
T is metric-preserving. This example settles Question Q3. 

Exercise 4 l131. Use Propositions 2.11 and Proposition 2.13 to show that JBza's 
function (1.1) is metric-preserving. 

To answer Question Q4, we invoke one of the closure properties of the class of 
metric-preserving functions. We summarize these in the following theorem; we 
omit the straightfonvard proofs. 

Theorem 2.16 i l l ,  [21, [171. 

(1) 	If f ,  g are metric-preserving and m > 0, then each of f o g, f + g, mf and 
max( f ,  g ) is metric-preserving. 

(2) 	If ( h, ), are metric-preseruingfunctionsthat converge pointwise to a function h 
and h(x) > 0 for all x, then h is metric-preserving. Likewise, if C:=,h, 
converges to a function 2 ,  where each function h, is metric-preservmg, then 2 
is metric-preserving. 

(3) 	If S is any set of metric preservingfunctions that is pointwise bounded and if we 
define g(x) = sup{f(x) : f E S), then g is metric-preserving. 

Example 5 [21. A discontinuous and metric-preserving function that is not tightly 
bounded. Define 

0 i f x = O  
f ( X )  = (1  + - 1 othenvise. 

The function f is discontinuous at 0 and not tightly bounded. Now, f = max(g, h), 
where g(x) = x and 

i f x = O  
+ l x  - 11 if x E (0,2) 

otherwise. 

Since h is metric-preserving (because it is tightly bounded), and g is metric-pre- 
serving, it follows from Theorem 2.16(1) that f is metric-preserving as well. This 
example settles Question Q4. 

We postpone a discussion of Question Q5 until the next section, where it is a 
central topic. 

3. STRONGLY METRIC-PRESERVING FUNCTIONS. In this section we charac- 
terize the metric-preserving functions that are strongly metric-preserving. An 
important theme here is the significance of the behavior of a metric-preserving 
function at 0: We show that such an f is strongly metric-preserving if and only if it 
is continuous at 0. 

We begin with some notation and an observation. For a metric space ( X ,d), 
x E X, E > 0, write: 

N ( d , x , ~ )= {y  ~ X : d ( x , y )  < E ) .  
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Lemma 3.1. Supposef is metric-preserving. Then the following are equivalent: 

(1) f is discontinuous at 0; 
(2) f 0 d is a discrete metric for every metric d. 

Proof of (1) - (2). Let (X,d)  be a metric space. By Proposition 2.7, there is an 
E > 0 such that f (z)  > E for all z > 0. Then N( f o d, x, E )  = {x} for each x E X, 
as required. rn 

Proof of (2) - (1). Let d be the usual metric on R and let E > 0 be such that 
N( f 0 d, 0, E)  = (0). It follows that there is a sequence (x,), of positive numbers 
converging to 0 (relative to d )  such that E < f(d(x,, 0)) = f(x,) for all n. This 
establishes (1). rn 

The next theorem first appeared in [2]; one direction of the theorem was 
observed in [16]. 

Theorem 3.2 [21. A metric-preservingfunction is strongly metric-preservmg if and only 
if it is continuous at 0. 

Proofi One direction follows from Lemma 3.1. For the other direction, suppose f 
is continuous at 0 and metric-preserving. Let (X,  d )  be a metric space. We show 
that f 0 d and d are equivalent metrics. Let E > 0 and x E X .  By continuity, let 
6 I E be such that f (z)  < E whenever 0 I z < 6. Then N(d, x, 6 )  cN(f 0 d, x, E). 
Hence, the d-topology refines the f o d-topology. To show the converse, again start 
with x E X  and let r > 0. Use Proposition 2.7(1) to obtain an E > 0 such that 
f (z>  2 E for all z 2 r. But now N( f o d, x, E)  c N(d, x, r), and we are done. rn 

In [2], the authors develop Theorem 3.2 further by providing necessary and 
sufficient conditions on a metric-preserving function f for d and f 0 d to be 
uniformly equivalent as well. 

As we now show, continuity at 0 forces a metric-preserving function to be 
continuous everywhere; this result answers Question Q5 from Section 2. 

Theorem 3.3 [21. Suppose f is metric-preserving and continuous at 0. Then f is 
continuous on [O, m). 

Proofi Assume that f is not continuous at some x, > 0. Let E > 0 be such that 
there are z arbitrarily close to x, for which If(z) - f(x,)l 2 E. By continuity at 0, 
let 6 < xo/2 be such that 0 I a < 6 implies f(a)  < E. Now pick z, so that 
Iz, - x,l < 6 and If(zo> - f(xo)l 2 E. Let a, = Iz, - x, 1. 

Case 1. f(z,) 2 f(x,) + E. 

If x, + a, = z,, then f(x,) + f(a,) < f(x,) + E I f(x0 + a,), which violates 
subadditivity. 

On the other hand, if z, + a, = x,, notice that (x,,z,, a,) is a triangle triplet, 
and in particular that x, - z, = a, < 6. But since f(z,) - f(x,) 2 E and f(a,) < 
E, (f(x0), f(z,), f(a,)) is not a triangle triplet, which violates Proposition 2.3. 
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Case 2. f(x,) 2 f(z,) + E. 

The proof in this case is similar to that in Case 1, and we omit it. 
In each case, we have obtained a contradiction from the assumption that x, is a 

point of discontinuity, as required. 

Thus, for a metric-preserving function f ,  the global properties of continuity and 
being strongly metric-preserving are completely determined by the behavior of f at 
0. And continuity of f at 0 is determined by a property that is apparently even 
weaker: It follows from Proposition 2.7(2) that f is continuous at 0 if and only if, 
for each E > 0, there is an x > 0 with f(x)  < E. We have proved the following: 

Theorem 3.4 [21. Supposef is metric-preserving. Then the following are equivalent: 

(1) f is strongly metric-preserving; 
(2) f is continuous at 0; 
(3) f is continuous on [0,m); 
(4) for each E > 0, there is an x > 0 with f(x) < E. 

As an application of Theorem 3.4, we give a proof of a result in [I] that 
improves upon Corollary 2.2(A): 

Theorem 3.5. Iffis metric-preservingand is convex on [0, c] for some c > 0, then f is 
linear on [0, c]. 

Proofi Let f be metric-preserving and convex on [0, c]. We establish the conclu-
sion of the theorem from the following three claims: 

Claim 1. For each x E [0, c] and each positive integer n, f(x/2") = f(x)/2". 

Claim 2. The function f is continuous. 

Claim 3. Whenever 0 < x Iy Ic, f(x)/x I f(y)/y. 

Using these claims, we prove the result by showing that f (x)  = (f(c)/c)x for 
all x E [0, el. Since this relation is obvious for x = 0, let x E (0, c], and let n be 
such that c/2" 5 x. Then by Claims 1and 3, 

as required. 
We turn to the proofs of the claims. Claim 1 is proved by combining parts (1) 

and (2) of Exercise 1. For Claim 2, we use Claim 1and Theorem 3.4(4): For any 
E > 0, we obtain x for which f(x) < E by setting x = ~ / 2 " ,where n is such that 
f(E)/2" < E. 

To prove Claim 3, let A = {u E [0, c]  :f(x)/x 5 f(y)/y whenever 0 < x 5 y 5 
u}. Vacuously, A is nonempty. Let z = supA; we prove A = [0, el by showing 
z = c. Seeking a contradiction, assume z < c. There are two cases to consider: 

Case 1. z 6L A. From our assumptions, it follows that there is an x, < z such that 
f(x)/x > f(z)/z whenever x, 4 x < z. For each such x, let g, :[0,m) + [0,a) 
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denote the function whose graph is the line through (0,O) and (x, f(x)). By the 
choice of z, whenever x, I x I y I z, we have g,o(z> > f(z)  and g,(y) 2 g,$y). 
By continuity of gx0, there is a 6 such that 0 < 6 5 z - x, and g,o(x) > f (z )  
whenever 0 < z - x I 6. Let x, = z - 6, and let E = gx$xl) - f(z). Then, when- 
ever 0 < z - x I6, 

which contradicts the continuity of f at z. 

Case 2. z E A. By our assumptions, we can find y such that f(z)/z > f(y)/y 
where y > z and y is arbitrarily close to z. Pick such a y with y - z < z. Set 
x = 22 - y. Then z = (x +y)/2, and by a straightforward computation, 

However, it is easy to verify that 

f ( x >  f ( z )  f ( z )  f ( z )  -fSx) 
- < - - implies --< ,

X z z . z - X  
and 

f ( y )  f ( z )  f ( r )  - f ( z )  f ( z )- < - implies < -. 
Y Z Y - z  z 

Combining the conclusions of (3.2) and (3.3), we have 

which contradicts (3.1). This completes the proof of Claim 3 and the theorem. H 

Metric-preserving functions can be viewed as a tool for producing new metrics 
of the form f 0 d on a given metric space (X,  d). The results of this section show 
that the usefulness of this tool does not lie in generating topologically distinct 
metrics; indeed, at most two distinct metrics, up to topological equivalence, can be 
obtained in this way: the discrete metric and d itself. More useful is the fact that 
whenever X has cardinality at least 2, there are c distinct metrics on X of the 
form f 0 d, where f is metric-preserving. This fact suggests that the class of 
metric-preserving functions may be a rich source for constructing metrics that are 
topologically equivalent to d but that exhibit new, mathematically interesting 
properties. Indeed, JBza's function (1.1) is just this kind of example. 

4. METRIC-PRESERVING FUNCTIONS AND DIFFERENTIABILITY. Mirror-
ing the situation for continuity, the notion of differentiability partitions the class of 
metric-preserving functions into two rather different subclasses determined by the 
value of the derivative of each function at 0. We shall see that the (extended) 
derivative of such a function always exists at 0; the central question is whether the 
derivative is finite or infinite. Functions with finite derivative form a well-behaved 
class of continuous functions that are differentiable almost everywhere; functions 
with infinite derivative, by contrast, can be very unruly-they can be continuous, 
nowhere differentiable (in the finite sense), and even, as we saw in Section 2, 
nowhere continuous. In this section we outline proofs of these results, which we 
have extracted from [I]. 
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We first show that for any metric-preserving function f ,  fr(0) exists in the 
extended sense. The proof naturally divides into two parts depending on whether 
the set Kf= {r > 0 :  f(x)  I m: for all x 2 O} is empty. In the course of the proof, 
we show that ft(0) < +a if and only if Kf+ 0 ,  and fl(0) = +a if and only if 
Kf= 0 .  The next lemma is the first step in proving the result for the latter case. 

Lemma 4.1 111. Iff is metric-preseruingand 0 < x I y, then f(y)/y I 2f(x)/x. 

Proof: Let n be a positive integer such that 

Then (x, x, y/2n-1) is a triangle triplet since ~ / 2 " - l  < 2x. Thus, f(y)/2"-' I 
f(y/2"-') I 2f(x), where the first inequality follows from Exercise l(1). Hence, 
using (4.1), f(y) I 2"-'(2 f(x)) I 2yf(x)/x, and the result follows. 

We can now prove that ft(0) exists and is infinite when Kf= 0 :  Let n be a 
positive integer. Since Kf= 0 ,  we can pick y > 0 such that f (y)  2 2ny. Let 
x E (0, y]. By Lemma 4.1, 2n I f(y)/y I 2f(x)/x. But now we have shown that 
for each integer n > 0, there is y > 0 such that f(x)/x 2 n whenever 0 < x I y, 
as required. 

We turn to the case in which Kff. 0.Suppose f is metric-preserving and that 
there is an h > 0 such that f (x)  I m: for all x E [0, h]  (that is, f is of r-bounded 
gradient at 0, as in Proposition 2.10). We show that in fact, f(x) I ix for all x 2 0. 
To see this, let x 2 0 and let n be a large enough integer so that x/2n I h. By 
Exercise 1(1), f(x)/2" I f(x/2") I ix/2", whence, f (x)  I m:. Combining this 
result with (2.21, we also have If(x) - f(y)I I rlx - yl for all x, y 2 0. Thus: 

Proposition 4.2 111. Suppose r > 0 and f is metric-preserving and of r-bounded 
gradient at 0. Then, 

(1) f(x) I m:for all x 2 0; 
(2) If(x> - f(y>I I rlx - y l for all x, y 2 0.G 

The next result that we need is a generalization of Theorem 3.5: 

Lemma 4.3 111. Supposef is metric-preseruingand r > 0. If in evely neighborhood of 
0 there is apoint a such that f (a)  = ra, then there is an h > 0 such that f(x) = m:for 
all x E [0, h]. 

Proof: The hypothesis and Theorem 3.4(4) imply that f is continuous. Let h > 0 
be such that f(h) = rh. Assume there is x E (0, h) with f(x)  + x. Let A = {y E 

[0, a )  :f(y)  = ry}. By continuity of f ,  A n [0, x ]  is compact and so has a maximum 
element, which we denote by m,, ,; likewise, A n [x, h] is compact, and we denote 
its minimum element by m,, ,. 

If f (x)  > m:, we show there is a number u E (m,, ,, x)  such that f(u) I m, 
from which it follows, by continuity, that f (z)  = rz for some z E [u, x), contradict-
ing the choice of m,,,. To obtain u, let y E A with 0 < y < x - m,,,. Now let 
u =y + mo,,and observe that 
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Similarly, if f(x) < nc,one obtains a u E (x, m,,,) such that f(u) 2 ru, yielding 
a contradiction, as before. Here, pick z EA with 0 < z < m,,, - x and set 
u = m,, ,- z. We leave to the reader the verification that u has the required 
property. rn 

Now we prove that fr(0) exists and is finite in the case Kf # 0.By Theorem 
3.4, f is continuous, whence Kf is closed. Let r, = minKf. We show 

f ( x )
ro = lim -

x-0 x 
Let E > 0. We claim that: 

for each h > 0, there is an x ~ ( 0 ,  - E)X.  (4.3)h] such that f ( x )  > (r, 

To see this, assume instead that there is an h > 0 such that for all x E [0, h], 
f (x)  5 rlx, where r, = r, - E .  Thus, f is of rl-bounded gradient at 0, and so by 
Proposition 4.2(1), f (x)  Irlx for all x 2 0, which contradicts the choice of r,. 

Next, we show that 

there exists an h > 0 such that f ( x )  > (r,  - E ) X  for all x E (0, h] . (4.4) 

Assume instead that 

for each h > 0, there exists an x E [0, h]  such that f ( x )  I (r, - E ) X .  (4.5) 

Let h > 0. By (4.3), there is an xl E (0, h] such that f(x,) > (r, - E)x,, and by 
(4.9, there is an x, E (0, h] such that f(x,) I(r, - E)x,. By the continuity of f ,  
there is an x, E (0, h] such that f(x,) = (r, - E ) X ~  = (r, -By Lemma 4.3, f(x)  
E)X holds on some neighborhood of 0, contradicting (4.3). This proves (4.4). 

Now since r, E Kf, we also have f(x) < (r, + E)X for each x > 0. Thus, 
combining these results, we obtain: for each E > 0, there exists an h > 0 such that 
r, - E < f(x)/x < ro + E whenever 0 < x Ih; that is, (4.2) holds, as required. 

We have proved: 

Theorem 4.4 [I]. Let f be a metric-preserving function. Then fl(0) exists (in the 
extended sense). rn 

We now show that a metric-preserving function f with finite derivative at 0 
must be differentiable almost everywhere. We begin with a key lemma: 

Lemma 4.5 [I]. Supposef is metric-preserving and f '(0) < +m. Then 

(1) f(x) Ifr(0) for all x 2 0; 
(2) If(x> - f(y)l Ifr(0)lx - y l for all x, y 2 0. 

Proof To prove (I), let E > 0. Since fl(0) < +w, there is an h > 0 such that 

for all x E [O, h]; that is, f is of (ft(0) + €)-bounded gradient at 0. By Proposition 
4.2, (4.6) holds for all x 2 0. Since E > 0 was arbitrary, the result follows. Part (2) 
can be proved by again applying (2.2). rn 

The proof of Lemma 4.5(1) shows that if f is metric-preserving and fr(0) < +w, 

then f is of bounded gradient at 0. The converse is also true, and follows 
immediately from Theorem 4.4. Thus: 
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Corollary 4.6. Let f be a metric-preservingfunction. Then f '(0) < +m if and only iff 
is of bounded gradient at 0. 

Our target theorem falls out directly from Lemma 4.5(2) and establishes 
Proposition 2.10: 

Theorem 4.7 111. Suppose f is metric-preserving and fr(0) < +w. Then f is of 
bounded variation on each closed interval lying in [0,w). Hence, f is differentiable 
almost everywhere. 

Finally, we consider the subclass of metric-preserving functions f for which 
ft(0) = +m. The following example, due to DoboS and Piotrowski, is a slight 
modification of Van der Waerden's continuous nowhere differentiable function [3]. 

Example 4.8 [ I l l .  A metric-preserving function that is continuous and nowhere 
differentiable. Define h : [0, m) -, [0, w) by 

where [a] denotes the integer part of a. It is easy to verify that h = T,, ;, for some 
tightly bounded function g (recall Proposition 2.13), and so h is metric-preserving. 
Likewise, for each integer n 2 0, h(2" .x)  is metric-preserving, and using Theorem 
4.9(1), so is h(2" .x)/2". Theorem 4.10(2) ensures that 

is metric-preserving as well. The proof that f is continuous and nowhere differen-
tiable is essentially the same as Van der Waerden's. 

The extent to which the class of metric-preserving functions is structured 
around their behavior at 0 has been a striking theme in this brief survey. Whether 
a metric-preserving function f transforms each metric d to a discrete metric or to 
a metric that is topologically equivalent to d is determined by whether f is 
continuous at 0. And whether f has the property of being (finitely) differentiable 
almost everywhere but nowhere infinitely differentiable is determined by whether 
fr(0) is finite or infinite. Although the results presented here offer many possible 
directions for generalization and further study, one of the most compelling is this: 

Which behaviors of a metric-preseruingfunction f at 0-such as continuity at 0 
or "fl(0) < +w"-determine interesting global properties off ? 
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Someone wrote a book called The .Toy of Mizth. 

Maybe I'll write a book called the The Patlzos of Math. 

For through the night I wander 

between intuition and calculation 

between examples and counter-examples 

between the problem itself and what it has led to. 

I find special cases with no determining vertices. 

I find special cases with only determining vertices. 

I weave in and out. 

I rock to and fro. 

I am the wanderer 

with a lemma in every port. 
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