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Magic Dice 

Bernard D. Flury, Robert Irving, and M. N. Goria 

1. INTRODUCTION. A magician offers her audience a betting game with two 
dice. With X and Y denoting the numbers shown by the first and the second die, 
respectively, the magician wins one ruble for 12 of the 36 possible outcomes (x,y ) ,  
and loses 1 ruble for another set of 12 outcomes, as indicated in Table 1. No 
payment is made in the remaining cases. This seems to be a fair game, but in fact 
the two dice are not independent, as seen from their joint distribution displayed in 
Table 1. Soon enough the audience realizes that every time a ruble is paid it is in 

TABLE1. Joint Probabilities for six-sided magic dice. 
Columns correspond to values of X; rows to values of Y. Entries are probabilities in multiples of 1/36. 
The audience wins if ( X ,Y) = (l,3), (1,5), (2,3), (2,5), (3,3), (3,6), (4,1), (4,4), (5,2), (5,4), (621, or 
(6,4). The magician wins for 12 other (arbitrarily chosen) outcomes. 

the magician's favor. This happens despite the fact that two observers who tally the 
frequencies of X and Y, respectively, find that both dice show each side with 
exactly the required relative frequency of 1/6. 

Now as almost everybody knows, marginal probabilities do not determine joint 
probabilities, and therefore the audience asks for a third observer. The magician 
agrees and lets someone tally the frequencies with which X + Y takes values 2, 
3,.  . . ,12. Sure enough, these are found to be 1/36,2/36, etc, just as expected if X 
and Y were independent fair dice. Hence a fourth observer is admitted who tallies 
X - Y, and finally a fifth observer who tallies X + 2Y. When asked to admit a 
sixth observer, however, the magician stops the game. 

As can be verified from Table 1, none of the five observers studying the 
distributions of X, Y, X + Y, X - Y, and X + 2Y is able to detect that something 
is wrong with the pair of dice. Indeed, all five observers find exactly what they 
expect if X and Y are independent regular dice, and the deviations of the joint 
probabilities from their fair value 1/36 remains undetected. 

The obvious question is, how many different observers can the magician admit 
without giving away the secret? To make this question clear, we formulate the 
rules of the game more precisely. Each time the magician is asked to admit 
another observer, she chooses a linear combination a x  + bY (with real coefficients 
a and b)  that is not proportional to any of the previously assigned linear 
combinations. She constructs her dice such that she can admit as many observers 
as possible, yet be able to offer unfair bets. The maximum number of observers 
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that can be admitted is called the magic number. We investigate magic numbers for 
k-sided dice, k 2 2. For six-sided dice the magic number is 5, and Table 1gives a 
particular example where five observers can be admitted. It is straightforward (but 
tedious) to verify in Table 1 that any further linear combination would indeed 
reveal that some joint probabilities are not 1/36. Showing that it is impossible to 
construct an unfair pair of dice that would admit more than five observers is 
somewhat more laborious; Theorem 6 gives us a final answer. 

2. DEFINITION OF MAGIC NUMBERS. For a fixed integer k 2 2, let (X,  Y) 
denote a bivariate random variable taking values in the set {1,2, . . . ,k} X 
{1,2,.. . ,k} with probabilities pij. 

Definition 1. A linear combination Z = a x  + bY is proper if its distribution is 
unchanged by setting all pij= l /k2.  

For any linear combination Z = a x  + bY we have 

pr [Z = m ] = pij,  
(i,  j ) € f m ( a ,  b )  

where 

y m ( a ,  b) = {(i, j )  E N2 : 1 I i I k,  1 I j I k, ai + bj = m}. 

Hence Z = a x  + bY is proper exactly if, for all integers m, 

where #(&I is the number of elements in the set 3 
Two linear combinations Z, and Z2 are considered identical if Z, = cZ2 for 

some c E R.The trivial linear combination 0 .X + 0 . Y is always excluded. 

Definition 2. For k E N, k 2 2, let m(k) denote the maximum number of differ- 
ent linear combinations such that the following condition holds: It is possible to 
find joint probabilities pij, where not all pij are equal to l /k2,  such that all m(k) 
linear combinations are proper. The number m(k) is called the magzc number for 
k-sided dice. 

For k I 4, m(k) can be found by hand, but for larger k a more systematic 
approach is needed. 

3. COMPUTATION OF MAGIC DICE, AND PRELIMINARY RESULTS. For 
k 2 2 there are only finitely many linear combinations that map the points 
(i, j )  E {I , . . . ,k} x {I , .. . ,k} into fewer than k2  different points on the real line 
(which, in turn, would determine all pij). For instance, for k = 3 the only linear 
combinations to be considered are X, Y, X + Y, X - Y, X + 2Y, X - 2Y, 
2 X  + Y, and 2 X  - Y. Only linear combinations with integer coefficients need to 
be considered, and a linear combination Z = a x  + bY can therefore be repre- 
sented as a pair of integers (a,  b). For each k 2 2 the set of linear combinations to 
be considered is as follows. 

Definition 3. The set of feasible linear combinations, or feasible set, for k-sided 
dice is the set Fkof pairs of integers (a,  b) such that 

(i) 0 1 a 1 k - 1 ,  - ( k - 1 ) s b s k - 1 .  
(ii) ab = 0 implies a = 1or b = 1. 

(iii) If both a and b are nonzero, then a and b are relatively prime. 
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Consider the matrix U = [uij], where uij = k2pij. For a given (a, b) E6 ,  the 
linear combination a x  + bY generates a number Nk(a, b) of linear equations in 
the variables uij. For example, for k = 3 and (a, b) = (1,1), the five equations 

are generated. In the Nk(a, b) equations generated by (a, b) E6 each of the 
variables uij  occurs exactly once, and the right-hand side of each equation is 
the number of variables on the left hand side. Using the vec-operator that stacks 
the columns of a matrix on top of each other, and writing 1, for the n-vector with 
1in each position, the equations generated by (a, b) E6 can be written as 

For k = 3 and (a, b) = (1, I), we obtain 

The matrix C(a, b) is binary, of dimension Nk(a, b) X k2, and has full row rank. 
For a subset 9= {(a,, b,), . . . ,(a,, b,)} c6 ,  let 

We refer to 

as the system of equationsgenerated by 9.Defining V = U - lk l tk ,  we can write (1) 
as 

C,vec(Vt) = 0. (2) 

For a given subset 9c4we have to solve (2). If rank(C,) = k2, then vec(Vt) = 0 
is the only solution, so U = l k l t k ,  and pij= l / k2  for all (i, j ) .  If rank((=,) < k2, 
then multiple solutions exist, and since vec(Vt) = 0 is always a solution, we can 
then obtain another solution for which the pij are probabilities. The magic number 
m(k) is the largest cardinality of all subsets 9c 6  such that rank(C,) < k2. 

In preliminary calculations for k up to 24, Gaussian elimination was used to 
determine the rank of of C, exactly. In all cases considered, whenever 9was a 
maximum cardinality subset it was possible to generate integer-valued solutions 
for U, as in Table 1. (This is always possible, as we will see at the end of Section 5). 
The computational problem was huge for the larger values of k, and it was 
necessary to program the Gaussian elimination algorithm in integer arithmetic to 
retain full precision. Results obtained in this way are summarized in Table 2. Note 
that the choice of a new linear combination to be included is not always unique. 
For example, when going from k = 5 to k = 6, we have a choice of including one 
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TABLE 2. Magic Numbers and Related Quantities for k-sided dice, 2 I k I 24. 
9 =  largest subset of Fksuch that rank[C,] < k2; C, m(k)= coefficient matrix generated by 9, = 

magic number for k-sided dice. In the column labelled 9 ,  each row shows only the linear combination 
introduced in addition to the ones already present in the preceding rows. Note: Magic dice for k = 23 
and k = 24 can also be constructed using the linear combinations (1,4) and (4 , l )  instead of (2,3) and 
(3,2). 

of the four linear combinations (1,2), (2, I), (1, -2), and (2, -1). For all values of 
k up to 24 it was possible to find k-sided magic dice with a set of linear 
combinations that contains the set of linear combinations used for k - 1 as a 
subset. We return to this point in Section 4. Table 3 shows joint probabilities for 
an example of 14-sided magic dice, admitting ten proper linear combinations. 

TABLE 3. Joint Probabilities for 14-sided magic dice. 

Columns correspond to values of X; rows to values of Y. Entries are probabilities in multiples of 
1/196. The set 9of proper linear combinations has elements (1,0), (0, I), (1, I), (1, -11, (1,2), (2, I), 
(1, -21, (2, - 11, (1,3), and (3,l). 
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Our first Lemma proves two intuitively reasonable aspects of magic numbers. 

Lemma 1. For the magic numbers m(k) the following holds: 

Proof Part (i) follows by taking a matrix U of dimension k x k that generates 
k-sided magic dice, and appending a column of 1's and a row of 1's. For part (ii), 
we prove a stronger result that implies (ii), namely: for any set of linear combina- 
tions 9={(al, b,), . . . , (ap,  bp)} with integer coefficients there exists a k E N such 
that rank[(=,] < k2. For any two positive integers a and b, the linear combination 
a x  + bY applied to k-sided dice can take integer values from a + b to k(a + b). 
Thus such a linear combination generates at most (k  - l)(a + b) + 1 equations. 
Similarly for arbitrary integers a and b, at most (k - l)(lal + Ibl) + 1equations 
are generated. Let N,  = /ail + lb,l (i  = 1, .  . . , p ) ,  and N = CiP,,N,. Then, for 
k-sided dice, the set 9generates at most 

P

C [ ( k - 1)N. + 11 = ( k - l ) N + p  
i = l  

equations. Choosing k such that k2 > (k  - l ) N  + p gives a coefficient matrix with 
k2 columns and fewer than k2  rows, which cannot have full column rank. rn 

4. FINDING MAGIC NUMBERS. We now describe a simple way to compute 
magic numbers. Throughout this section we refer to the first and k-th rows and 
columns of the matrix U as the margins of U. 

Lemma 2. For jixed k and for any 9c5 the following two conditions are equiva- 
lent: 

(a) rank(C,) = k2. 
(b) At least one of the margzns is uniquely determined. 

Proof Clearly (a) implies (b). To show the reverse, let u j  be the j-th column of U, 
and suppose (b) holds for the first column. Define a k X k matrix Up,  = 

(u,, . . . ,u,, 1,), and notice that 9generates the system of equations 

To see why this is true, represent the k2  variables as grid points with coordinates 
(i, j), 1 I i, j I k, in the plane. (This is similar to the approach to be used later in 
the proof of Lemma 3). Each of the equations generated by 9may be represented 
by a straight line that hits one or several points that correspond to variables. 
Formally, we may associate grid points outside the square with variables whose 
value is set to be 1. Then (1) holds as well if we shift the square by one unit to the 
right, which implies (3). By assumption, the first column vector of U-, must be 1,. 
By induction all columns of U must be equal to 1,. rn 

Lemma 2 shows that it is important to understand the conditions under which 
the margins are determined. In fact, as soon as at least one linear combination 
(a, b) with ab # 0 enters the equation system, some entries in the corners of U are 
determined (must take the value 1). In the next lemma, which is central to the 
theory, we describe the way in which the corners of U "fill up" as the number of 
linear combinations increases. 
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Lemma 3. Let 9" be a set of r 2 1 linear combinations (a,, b,) such that both 
a, 2 1 and b, 2 1. Let a + =  CL,,a, and b + =  Ci=,bh.  If U solues the system of 
equations (1) generated by 9+,then 

(i) ul j  = 1f o r j  = 1, . . . , a + ,  andui l  = 1for i  = 1,..., b+. 

-
(ii) Ifriseuen, thenu,,,++, - u , ,++ , ,~ .I f r i sodd ,  thenu,, ,++, + u,++,, ,  = 2. 

(iii) The ul j  for j > a +,and the uil for i > b+, are not determined. 

Prooj? Let 9+={(a,, b,), . . . ,(a,, b,)). In the real plane, consider the grid given 
by all points with positive integer coefficients, and identify the grid point (i, j )  with 
the corresponding variable u i j  For the current purposes we may think of the 
number of grid points as unlimited. The linear combinations in 9' determine 1to 
be the value of some of the variables associated with grid points near the origin. 
Let m, = a,/b, for h = 1, .  . . ,k, and assume without loss of generality that 
m, > m, > ... > m,. For h = 0,.  . . ,r,  let 

r r 

ah= x a i  and p, = C b , ,  
i=h+l  i =  1 

define r + 1points 
P h = ( p h + l , a h + l ) ,  h = O  ,...,r ,  

and call them the characteristicpoints of 9".In particular, we have Po= (1, a + + 1) 
and P, = (bf  + 1,l) .  Conversely, let P, = (x,, y,), h = 0,.  . . ,r, denote r + 1grid 
points in N2 such that x, = 1, yr = 1, and the sequence m, = (y,-, -y,)/ 
(x, - x,-,) is monotonically decreasing. Then the P, determine an associated set 
9" with elements (a,, b,) to (a,, br) uniquely by P, - Ph-, = (- b,, a,). Thus 
there is a one-to-one relationship between sets 9' and their characteristic 
points. 

For a set 9'with characteristic points Po, . . .,P, let 1, be the line segment 
connecting points P,-, and P,, and denote by 2 the polygon obtained by joining 
the r line segments. We now show that all variables associated with grid points 
inside the area bounded by 2 and the coordinate axes are determined (= 1) by 
the equations generated by 9'.This implies part (i) of Lemma 3. See Figure 1for 
a graphical illustration. 

Figure 1. Illustration of the Proof of Lemma 3. Grid points whose associated variables are determined 
by the linear combinations in the set 9"= ((2, I), (1,I), (2,3), (1,211 are marked by plus-signs. The 
characteristic points of 9' are shown as large dots, and connected by the polygon 9. 
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We show first that the above statement implies part (ii) of Lemma 3. Denote the 
variables associated with the characteristic points Po, . . . ,P, by t o , .  . . , t,,. The line 
segment 1, corresponds to an equation 6,-, + 5, = 2 because all other grid points 
in N2 hit by the line of which I ,  is a segment are determined. Thus we have an 
equation system 

Successive elimination of intermediate variables gives 5, + 5, = 2 if r is odd, and 
to= & if r is even. This proves part (ii) of Lemma 3. Note also that if we set any 
of the 5, equal to 1, then by the above equation system all other 5, are 
automatically 1as well. 

We now prove that all variables in the area below 2 are determined. For each 
real s with 1 5 s 5 a + +  1 let 2 ( s )  be the polygon obtained by translating 9 
down to start at (1, s )  instead of at (1, a + +  1). Let 1 = s, < ... < s, = a + +  1be 
the sequence of distinct values of s such that 5%) passes through a grid point in 
the area bounded by 9and the axes. Then, by induction on i for i = 1 to i = m, 
all variables are determined in the interior of the area bounded by 2 ( s i )  and the 
axes. In passing from i to i + 1it has to be shown that each grid point P on 9 ( s i )  
is determined. If P is the only grid point on a segment of P h i ) ,  this is obvious. If 
P and Q are two grid points on the same segment of 2 ( s i ) ,  they must be at the 
ends of the segment, si must be an integer, and there is a chain of grid points 
along 9 ( s i ) ,  one at each corner. The lowest of this chain of grid points is 
determined, hence so are all the others by working along the chain. 

To prove part (iii), we proceed by induction on r. Assume that (iii) hold true for 
some r 2 1, and notice that no variable associated with a grid point (i, j), where 
j > a+ ,  is determined. Adding a new linear combination (a,,,, b,,,) to the 
previous set 9' of r linear combinations, we get a new set = 9 +  
u {(a,+,,b,,, )}, whose initial characteristic point is (1, a +  + a,,, + 1). The only 
way the variable associated with this characteristic point could be determined is 
that the variable associated with the point (b,,, + 1, a + +  1) is determined, which 
is not the case. Similarly, the variable associated with the final characteristic point 
of zf,,is not determined. rn 

By Lemma 3, the system of equations generated by 9' imposes exactly 
a ++ b+ linearly independent constraints on the variables associated with points 
on the left and bottom margins: the first a +  points are determined vertically, the 
first b+ points in the margin are determined horizontally, which means that 
a + +  b+-  1 points are determined around the corner, plus the additional con-
straint of part (ii). For fixed k, consider similarly the three remaining corners of 
the matrix U. Exactly the same result as Lemma 3 is established for the corner with 
coordinates (k, k). For the two remaining corners, consider a set 9- of linear 
combinations (a,, b,) where a, > 0 and b, < 0, and put a - =  Ca,, b-= Clb, 1 ,  
both sums extending over all (a,, b,) E9-.The same arguments as in Lemma 3 
show that the first a -  points are determined vertically, and the first b- points are 
determined horizontally. Finally, let 9' be a set of linear combinations where 
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either a, = 0 or b, = 0; there are at most two elements in y o ,  each imposing a 
constraint on the rows and columns, respectively. Put a0  = Ca, and b0 = Cb,, 
both sums extending over all elements in 9'.Both a0  and b0 can only take values 
0 and 1. 

Finally, for a given set 9 cF,,we can write 9 as the union of three disjoint 
sets PO, 9 + ,  and 9 - ,  as above. Let 

and 

By the previous considerations, exactly a* constraints exist on the first column of 
U, and b* constraints on the first row of U. By Lemma 2, all variables in U are 
determined exactly if a* 2 k or b* 2 k. If max{a*, b*} < k, then U is not com- 
pletely determined. Thus we have the following main result. 

Theorem 4. The magic number m(k) is the number of elements in a largest set 
9c5 such that 

C a , < k  and C I b h I < k  
( a h ,  b h ) € 9  (a,,, b / , ) ~ 9  

For example, the set 9consisting of linear combinations (1, O), (0, I), (1, f I), 
(1, k 21, (2, k I), (1, k 3), (3, k I), (2, k 3), (3, k 21, (1, k 4), (4, k I), and (3,4), 
has 21 elements, with Ca, = 40, Clbhl = 41. This is a largest set such that 
max{Ca,, Clb,l} < 42, and therefore m(42) = 21. The set is not unique because 
the linear combination (3,4) may be replaced by any of (3, -4), (4,3), or (4, -3). 
Let Y*be the set obtained by taking (3,4) out of 9and adding the two linear 
combinations (1,5) and (5,l); then 9*has 22 elements, with Ca, = C l bh1 = 43. 
This is a largest set such that max{Ca,, Clb, I} < 44, and therefore m(44) = 22. 
This shows that the linear combinations contained in magic k-sided dice are not 
necessarily all contained in magic (k + 1)-sided dice. See the discussion following 
the proof of Theorem 6 .  

We now show how the magic number m(k) can be expressed in terms of the 
classical Euler totient (or phi) function. For a positive integer n, $(n) is the 
number of positive integers less than n that are relatively prime to n. For 
convenience, we define $(I) to be 1. Also define 

and 

and put F=U ,.,Sr,, where 9,is the feasible set for k-sided dice. For a subset 
9of St; let a, = max(Ca, CIb I ), where the sums are taken over all pairs (a,  b) E9 ,  
and call 9 k-bounded if a, < k. It is convenient to view 5" as an ordered 
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sequence of pairs in which (a, b) precedes (p ,  q )  if 

(i) a + lbl < p  + 141, or 
(ii) a +  jbl = p +  J q J  a n d l b l - a J > J l q J  - p l .  

Further, if 0 < a < b < k, with a and b relatively prime, then the pairs (a,  -b), 
(b, -a), (a,  b), and (b, a )  appear in that order in the sequence. The first few pairs 
in represented as an ordered sequence, are (0,1), (1,0), (1, -I), (1,1), (1, -21, 
(2, - I), (1,2), (2,1), (1, -31, (3, - I), (1,3), (3,1), (1, -41, (4, - 0 ,  (1,4), (4,1), 
(2, - 31, (3, - 2), (2,3), (3,2), (1, -5), (5, - I), . . . . 

For r > 0, define 

= C a  = C l b l ,  

where the sums are taken over the first 2r  pairs in the ordered sequence St; Note 
that a,, = a, when 9is the set of the first 2 r  elements in the ordered sequence. 

Verification of the following lemma is straightforward. 

Lemma 5. If @(n) I r < @(n + I), then 

(i) a,, = T ( n )  + [ r  - @(n)l(n + 1). 
(ii) Any 	 2r-subset 9of F must have a, 2 a,,, and, for r > 1, any (2r + 

1)-subset 9of 9 m u s t  have a, 2 a,, + [(n + 31/21. rn 

Trivially, m(2) = 2 and m(3) = 3. For k > 3, Lemma 5 enables us to establish 
the value of m(k). 

Theorem 6. F o r k  > 3, suppose *(n) < k I T ( n  + 11, and letp = k - T ( n )  - 1. 

(i) Ifp mod (n + 1) < [(n + 31/21, then 

m ( k )  = 2@(n)  + 21 p / ( n  + 1)1, 

and a maximum cardinality k-bounded subset of F c a n  be obtained by taking 
the first m(k) pairs in the ordered sequence. 

(ii) 	Ifp mod (n + 1) 2 [(n + 3)/21, then 


m(k )  = 2@(n)  + 2 [ p / ( n  + I)] + 1, 


and a maximum cardinality k-bounded subset of F can be obtained by 
taking the first m(k) - 1 pairs in the ordered sequence together with the pair 
(L(n + 3)/21,1(n + 1)/21). 

Proof: (i) If r = @(n) + Lp/(n + 111, then by Lemma 5(i), 

a,, = T ( n )  + (n,+ 1) [ p / ( n  + 1)1 I T ( n )  + p  = k - 1, 

so we have a k-bounded set of the claimed size. On the other hand, by Lemma 
5(ii), any subset 9of F o f  size 2 2r + 1has 

and so it cannot be k-bounded. 
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(ii) If r = @(n) + [p/(n + 1)1, then, if 9is the set described, Lemma 5(i) 
gives 

= ~ 2 ,+ L(n + 31/21 

= W n )  + ( n  + 1) L P / ( ~+ 111 + L(n + 31/21 

I W(n) + p  - [ (n  + 3)/2] + [ (n  + 3)/2] 

= k - 1 ,  
so again we have a k-bounded set of the claimed size. On the other hand, it is 
easy to verify that 

Uzr+2 2 UZr + n + 1, 

so that, by Lemma 5(ii), any subset 9of F o f  size 2 2r  + 2 has 

2 uzr+2 

2 W(n) + ( n  + l ) [ p / ( n  + I ) ]  + n + 1 

> T ( n )  + p  - ( p m o d ( n  + 1))  + n  + 1 

> k - 1 ,  
and so cannot be k-bounded. 

As seen from Theorem 6, a set of k-sided magic dice can not always be 
constructed such as to contain the same linear combinations as magic (k - h i d e d  
dice. Theorem 6 allows us also to establish the asymptotic behavior of the function 
m(k), based on the growth rate of the function @. First we need another 
preliminary lemma. 

Lemma 7. For the functions @(n) and W(n), the following holds: 

(i) @(n) = 3n2/.ir2 + O(n1og n). 
(ii) W(n) = 2 n 3 / r 2  + 0(n210g n). 

Proof For part (i), see [3, pp. 448-4491, For part (ii), by summation of parts, 
W(n) = n@(n) - Cy:: @(i). Thus 

3 3 n-1  
W(n) = ,n3 + 0(n210gn)  -7 [ i2  + O(ilog i ) ] ,  

7T .ir i-1 

and the result follows. 

Theorem 8. The asymptotic behavior of m(k) is 

m ( k )  = ck2l3+ ~ ( k ' / ~ l o ~k) ,  where c = 6 / ( 2 ~ ) ' / ~= 1,7621. 

Proof Given k, choose n such that 

T ( n )  < k IW(n + I ) ,  

and hence 

2@(n)  = m(W(n) + 1) I m ( k )  < m(W(n + 1) + 1) = 2@(n  + 1) 

From Lemma 7(ii) we have 

2 
k = ,n3 + 0(n210g n) ,  

7T 
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and from Lemma 7(i), 
6 

m ( k )  = ,n2 + O(nlog n ) .  
7T 

It follows that 

n = ( 7 ~ ~ / / 2 ) ~ / 'kl/' + O(Iog n)  
and so 

6 2 

m ( k )  = [ ( 7 ~ ~ / 2 ) ~ / ' k l / '+ O(log n) ]  + O(nlog n ) .  

Using n = O(k1I3)leads to the stated result. 

Figure 2 shows a graph of exact values of m(k) along with the approximation 
&(k) = 6k2 /3 / (2~ )2 /3 ,for 2 I k I 100. AS can be seen from the graph, the 
approximation is excellent. 

Before you ask, the magic number for 1998-sided dice is 280. 

~ b l o i o 3 o i 050 6 ' 0 7 0  8 0 9 0 1 i 0  
k = number of sides 

Figure 2. Exact values of the magic function m(k) (dots) and approximation & ( k )= 6 k 2 / 3 / ( 2 ~ ) 2 / 3  
(solid line). 

5. THE RANK OF THE COEFFICIENT MATRIX. The theory of Section 4 allows 
us to find the magic number m(k) as well as an associated set 9c9-without 
solving the equation system of Section 3. For generating actual magic dice we still 
have to solve the equation system. As a byproduct of the Gauss-Jordan algorithm 
we obtain the rank of the coefficient matrix C,. In the current section we give a 
simplified method for computing the rank of C, that does not require solving the 
equation system. 

The idea is to study how the rank increases for a given set 9 of linear 
combinations if we go from (k - h i d e d  dice to k-sided dice. Let U be the 
(k - 1) x (k - 1) matrix of variables for (k - 1)-sided dice, and write A (instead 
of C, as before) for the coefficient matrix generated by the linear combinations in 
9.Going from k - 1 to k, we add a row and a column to the matrix U, thus 
introducing 2k - 1 new variables to get a new matrix U* of dimension k x k. 
Instead of writing the equation system for k-sided dice in terms of vec(U*') as 
before, consider the variables contained in U as the (k - 1)' first ones, and the 
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2k - 1new variables as the last ones. The coefficient matrix for k-sided dice can 
then be written in partitioned form as 

If A has s rows, then B has dimension s X (2k - 1). That is, the entries of B are 
coefficients of the newly introduced variables, but only for equations that involve 
entries from U. The matrix C contains the coefficients of all equations that involve 
only newly introduced variables; it has 2k - 1columns and C(a, + Ib, 1) rows. We 
will now show how r(k - 1; 9 )  = rank(A) and r(k; 9 )  = rank(A*) are related. 

Perform Gauss-Jordan type row operations on the matrix A*, based on the first 
(k - 1)' columns, until as many rows as possible have zeros in the first (k - 1)' 
entries. That is, transform A* into 

where A, has full row rank r(k - 1; 9 ) .  Because A, has full row rank, we get 

rank(A*) = rank(A,) + rank [:I
Thus the rank of the coefficient matrix increases by S = rank when going from[:I
(k - 1)-sided dice to k-sided dice. But S is the number of linearly independent 
constraints imposed on the newly introduced variables, i.e., the number of con-
straints imposed by 9on the variables in the first row and first column, say, of the 
matrix U*. 

In the notation and terminology of Section 4, consider the lower left corner of a 
k x k grid, and assume max{Ca,, Clb,l} < k, where both sums extend over all 
elements in 9 .  By Lemma 3, the variables associated with a ++ bf - 1grid points 
around the corner (1 , l )  are determined. In addition, there is a linear constraint 
between one of the variables in the first column and one of the variables in the 
first row, making the total number of constraints due to 9' equal to a + +  b'. The 
linear combinations in 9- determine another a - variables vertically and b-
variables horizontally, and the linear combinations in 9' add a0  and b0 con-
straints vertically and horizontally, respectively. Thus the total number of con-
straints is C(a, + Ib,l), where the sum extends over all elements in 9 .  The rank 
increase is therefore 6 = C(a, + Ib,l), independent of k, as long as k is large 
enough. 

If either Ca, 2 k or Clb, 1 2 k, then Lemma 2 ensures that rank(A) = (k - 1)' 
and rank(A*) = k2;  that is, the rank increase is S = 2k - 1.Finally, notice that for 
k = 1the rank of the coefficient matrix is always 1, regardless of how many linear 
combinations are in 9 .  

This is summarized in the following theorem. 

Theorem 9. Let r(k; 9 )  denote the rank of the coeficient m a h  of the equation 
system generated by the linear combinations (a,, b,) in the set 9 ,  for k-sided dice. 
Then, for k 2 2, 

~ ( k ;9 )  = r ( k - 1 ; 9 ) + C ( a h + I b h I )  i fmax{Cah,CIbhI}<k,  
otherwise. 
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For a given set 9 of linear combinations, Theorem 9 provides a simple 
recursion to compute the rank of the coefficient matrix. In particular, if 9 is a 
largest set of proper linear combinations, then r(k; 9 )  = (k - 1)' + C(a, + Ib,I), 
and the number of free variables in the equations system is 2k - C(a, + I b, 1) - 1. 
For instance, in Section 4 we gave a set 9 of linear combinations for 42-sided 
magic dice and found m(42) = 21. Theorem 9 gives r(42; 9 )  = 1762 = 42' - 2. 
For all sets of 1998-sided magic dice, the rank is 3992003 = 1998' - 1. 

Finally, we return to a question raised in Section 3: Is it always possible to find 
an integer-valued solution to the system of equations generated by 9 ?  The 
answer is yes, by the following argument. If the coefficient matrix has rank r, then 
the values of f = k2  - r variables can be chosen. Identify a free variable associ- 
ated with a characteristic point. Set the remaining (if any) f - 1 free variables 
equal to 1, and assign the value 0 or 2 to the chosen free variable. Then, working 
along chains like the polygon in Figure 1, variables are assigned values of 2 and 0 
in an alternating pattern. 

6. EPILOGUE. "Magic Dice" originated in the first author's attempts to teach 
undergraduate students that marginal distributions do not determine joint distribu- 
tions. It is natural to ask how much more information needs to be given (in 
addition to the marginal distributions) such that a joint distribution is completely 
determined. Although the story about the magician is flawed (in the sense that it 
appears physically impossible to construct such dice), students can relate to it and 
find it entertaining. In fact, it would take a TRUE magician to make the numbers 
shown by two dice depend on each other! This distinguishes our magic dice (or 
"pseudo dice," as suggested by a reviewer), from tricks with dice as described in 
[21. The term "magic" may also be justified by the similarities with magic squares 
[61. 

The idea of defining a joint distribution of two or several random variables by 
conditions imposed on linear combinations of the variables is not new; for 
example, a common definition of the multivariate normal distribution states that X 
is multivariate normal if every linear combination of X is univariate normal or 
constant. Melnick and Tenenbein give a nice example to illustrate that for any 
finite k, normality of k linear combinations does not imply multivariate normality 
[4]. For the discrete case, RCnyi shows that a distribution of n strictly positive 
masses located at n distinct points in the plane, where both the sizes and locations 
of the masses are unknown, is determined by any n + 1 distinct projections, but 
not necessarily by n distinct projections [S].BClisle et al. study related questions 
for non-discrete probability distributions [I]. 

Finally, it is not difficult to see that the same results hold as well for arbitrary 
distributions on a k x k grid, as long all k2  probabilities are strictly positive. Up to 
Theorem 4, results also generalize easily to the situation of distributions on a 
rectangular grid of size k ,  x k,. It is natural to ask related questions in higher 
dimension, but to our knowledge no results have appeared in the literature. 
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It's a kind of transitive law, isn't it? 
when, in a house of growing childrcn 
two people who pet the same cat are petting each other. 
Especially if one of them is holding the cat. 
Especially if both of them are holding thc cat. 
And if Devin gcts under the blanket with Mirage 
and lets only their heads stick out 
and smiles up in that way 
if the pug of his nosc is close to that spot bctwccn Miragc's ears 
and if I grab hold of it all 
and kiss it all . . . 
well, Devin also knows 

and Mirage also knows 

that something is necessary 

something is sufficient 

and something else is scared. 


Contributed by Marion Cohen,  Drexel University, Philadelphia, P A  
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