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Six Ways of Looking at Burtin's Lemma 

S. Anoulova, J. Bennies, J. Lenhard, D. Metzler, 
Y. Sung, and A. Weber 

In an article in this MONTHLY in 1953 Metropolis and Ulam asked for the expected 
number of components of the graph induced by a purely random mapping of a set 
of n points into itself [7]. This problem was solved one year later by L. Kruskal [6]. 
In 1955, L. Kac [4] computed the probability that this random graph is connected, 
that is, that the number of components is 1. In 1981, S. Ross [9] treated the same 
questions for more general random mappings in which the function values are 
independent and identically distributed but not necessarily uniform. The funda- 
mental lemma of [9] had been proved earlier by the young Russian mathematician 
Y. D. Burtin, several months before his death in 1977 [2, Prop. 11: 

Burtin's lemma: Let F(l), . . . ,F(n) be independent and identically distributed 
with P{F(i) = j} =p,, j = 0,. . . ,n. Generate a random directed graph r with 
vertices (0,. . . ,n) by drawing an edge from i to F(i) for each i = 1, .  . . ,n. Then 
this graph is connected with probability p,. 

The proofs of Burtin's lemma given in [2] and [9] both use induction on n, 
lumping together all those vertices directly connected to 0. In 1984, still another 
inductive proof was given by Jaworski [3]. The six ways of looking at Burtin's 
lemma presented here arose from the attempt of each of us to understand it 
better. 

Burtin's lemma has interesting connections with the random generation of 
spanning trees. Assign to each pair (i, j )  (1 I i I n, 0 I j I n) the weight p,, and 
consider the problem of generating a random spanning tree on (0,. . .,n} with root 
0 such that the probability of a tree is proportional to the product of all its edge 
weights. Propp and Wilson [8] describe how to do this in a straightforward way: 
Start at an arbitrary element i of (1,. . . ,n), and consider the iterates F(i), ~ ~ ( i ) ,  . . . 
until the first time they hit 0. Delete the cycles of the path from i to 0 and take 
this as the trunk of the tree. Then take an element j not on the trunk (if there are 
any), proceed in the way described until you hit the trunk, delete the cycles, and so 
on. Burtin's lemma then tells us that the probability of never producing a cycle in 
all these attempts is just p,. In'fact, our Proof 4 computes this probability directly. 
Proof 5 provides a more economical algorithm for generating a random spanning 
tree with the desired distribution. 

Propp and Wilson [8] also treat the more general scenario in which the weights 
of an edge (i, j )  can be of the form pi, rather than pj  only. They also. relate the 
problem of generation of random spanning trees to that of exact simulation of the 
equilibrium of a Markov chain by their algorithm of "coupling from the past." In 
[8, Sec. 1.31, they give a short history of random spanning tree generation, 
including references both to the algebraic method (which relies on variants of the 
so called matrix tree theorem [I, Ch. 2, Thm. 81 and the method using Markov 
chains. 



And now to the proofs. Let A (for "acyclic") be the event that r contains no 
cycle. One easily sees that A can also be described as the event that 

1) r is a (directed) tree; or 
2) r is connected (as an undirected graph); or 
3) there is a directed path from each vertex i = 1, .  . . n to 0. We then say 

"Each i = 1, .  . . n chooses, directly or indirectly, the vertex 0." 

The first proof is a direct computation of Pr(A). 

Proof I :  We enumerate all graphs from each of whose vertices 1 , .  . .,n all choose, 
directly or indirectly, the vertex 0. Let mi be the number of immediate predeces- 
sors of the vertex i. Obviously m, 2 1and CY,,mi = n. 

Construction: 

a) Given {mi}, choose successively for each vertex i = 1, .  . . ,n its mi immedi- 

ate predecessors. For i = I there are (nil1possibilities; F(1) ) = 1 is not 

allowed since this would create a cycle. For i = 2 there are two cases: 

(i) If F(2) = 1, then F(1) = 2 is not allowed and there are 
( n - : : - l )

possibilities. 

(ii) If F(2) # 1, then F(2) = 2 is not allowed and there are also 
( n - : : - l )

possibilities. 
n - ml - ... -mk- l  - 1

This argument holds for all k so in general there are 
mk 

possibilities to choose the m, immediate predecessors of vertex k. 
b) The m, vertices that are left are the immediate predecessors of the vertex 0. 

In all there are 

possibilities to construct such a graph for given m,, . . . , m,. 
Summing over all mi we get 

Proof 2 is inductive and works by lumping together an individual n and the one 
it chooses. 

Proof 2: Suppose the proposition is proved for n - 1 2 2 individuals; for n = 2 
(exactly one voter) it is trivial. We partition A according to the choice of individ- 
ual n. 
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If F(n)  = 0, we combine the individuals 0 and n into one new individual and 
start again with n - 1individuals. By the induction hypothesis the contribution of 
this case to Pr(A) is po(po+ p,). 

If F(n)  = j, j E {I , .. . ,n - l}, we combine individuals j and n and obtain 
probability weights p,, p,, . . . ,pj  + p,, . . . ,p,-,; hence this case contributes the 
probability pjpo 

Finally, if F(n)  = n, we have a cycle, so this case contributes nothing. 
Summing over all these possibilities we get: 

The next proof is also by induction, but in this case we show that lumping 
together individuals n - 1 and n does not change Pr(A). Iterating this argument 
then proves the proposition. 

Proof 3: We imagine that only the individuals 1, .  . . ,n - 2 have already chosen 
their successors. 

We consider two scenarios: 

(i) with individuals n - 1and n left to make their choice, 
(ii) with the composite individual (n - I)', which is obtained by lumping 

together individuals n - 1 and n. This individual has weight p(,-,,, = 

Pn-1 +Pn. 

Obviously the probability that there is no cycle so far is the same in both 
scenarios. 

Let Tk be the set of all individuals who have, directly or indirectly, chosen k. At 
this moment, in (i), To,T,-,, and T, are disjoint and are trees since r so far 
contains no cycles. In (ii) the same holds for To and q,-,,,. 

In scenario (i) a cycle in r would be created if F(n - 1) E Tn-, or F(n)  E Tn 
or {F(n - 1) E Tn and F(n)  E T,-,}. The probability for this is S,-, + S,, where 
S,-, and S, designate the sums of the weights of all vertices (including the root) in 
Tn- and T,, respectively. 

In scenario (ii) the choice of (n - 1)' produces a cycle if and only if F((n - 1)') 
E q,-,),.The probability of this is S(,-,,, = S, + S,-,. 

In Proof 4 we consider the stochastic process of the successive choices of the 
individuals. 

Proof 4: Let the n individuals make their choices in succession beginning with 
individual n and ending with individual 1. Let Ck be the event that individual k 
completes the first cycle. We claim: 



If this claim holds, the proposition follows by an easy calculation: 

We check the correctness of the claim. Suppose that the individuals {n, . . . ,k + 1) 
have not completed a cycle: this is the case if and only if each of them has chosen 
(perhaps indirectly) one of (0,. . . , k}, otherwise a directed path along the arrows 
would start from this individual without reaching any element of {O, . . . ,k}, and 
would therefore be a cycle. For example, in Figure 1, n chooses (n - 2), (n - 1) 
chooses k, and (n - 2) chooses k (indirectly). 

Figure 1 

The event that individual k now completes the first cycle consists of two parts: 

(i) F(k)  = k, which happens with probability p,. 
(ii) F(k)  E {k + 1, .  . .,n), and F(k)  has chosen (perhaps indirectly) k; the first 

of these occurrences happens with probability C:=,+, pi. As to the second 
occurrence, consider the path starting at F(k). The probability that it hits 
the set (0, . . .,k) in k is pk/Cf=opi .Therefore: 

Proof 5 gives a bijection between cycle-free graphs of F and graphs where 
F(1) = 0. It also provides an economical algorithm for generating a random 
spanning tree with root 0. 

Proof 5: Consider the set B of all graphs r where 1 + 0 is an edge. B occurs with 
probability po .  We want to prove Pr (A)  = Pr(B). We do this by constructing a 
bijective map f :B + A  with the property Pr( f(b)) = Pr(b) for all b E B. 
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Consider a graph b E B. For example: 

The graph defines a partition into cycles of all the vertices that lie on a cycle. In 
our example: (753)(6). 

Now we define f(b) E A by assigning the following graph to the corresponding 

permutation (753)(6) = (::g) : 

Both graphs occur with the same probability, namely p ~ p l p ~ p ~ p , p ~ p $ ,be-
cause we do not change the number of edges that point toward each vertex. 

The example describes how to construct a measure-preserving bijection (each 
permutation has a unique cycle-representation) for each selection of vertices that 
builds the cycles or the path between 1 and 0. Together the bijections define the 
desired f .  

Proof 6 uses the fact that a cycle-free F codes a tree with root 0, and also gives 
a simple algorithm to generate a random spanning tree in a special case. 

Proof 6: The connected graph without cycles generated by F (when A occurs) can 
also be considered as a labeled rooted tree. In this context it is more natural to 
think of F(i) as the predecessor rather than the successor of i. Each vertex i has 
exactly one predecessor F(i). The root is zero. 

According to Knuth [S,p. 3891 we can code each rooted (0,. . . ,nl-labeled tree 
f by a vector K(f )  = (Kl(f ), . . .,Kn(f )) E (0,. . .,n)", see Fig. 2. 

The following proof is based on the equation 

P r ( A ) =  P ~ ( F = K - ' ( x ) )  
x s { O ,  . . . ,n)" 

and the simple structure of the summation range. Three properties of K are 
important for the computation of Pr(F = KP1(x)): 

(i) Kn(f )  is the label of the root of f. 
(ii) The number of children of a node equals the number of occurrences of its 

label in the multiset [K,(f ), . . .,Kn(f )]. 
(iii) Every x E (0,. .. ,n)" codes a tree. 



Figure 2. Knuth's coding of a rooted (0,. . .,n)-labeled tree f into K(f)G (0,.. .,n)": We get the list 
of numbers Kl(f ), . . .,K,,( f) by iteratively removing the highest labeled leaf and noting the label of its 
predecessor. In each iteration step, a node is considered to be leaf, if all its children are already 
removed. 

From (i) follows that Pr(F = K-'(x)) = 0 for Kn(f )  # 0, because if F is a tree 
at all, it has 0 as root. For every rooted labeled tree f ,  (ii) implies equality of the 
multisets [fil),  . . .,fin)] and [Klif 1,. . .,Knif 11. Let T be the set of all 
(0,. . . ,nj-labeled trees with root 0. We obtain: 

-- C PI, ... ~ x , ,= ( P O+ ... + ~ n ) ~ - l.PO= P O *  
x€{O,. ..,n)"-' x{O) 

Note that this also gives an algorithm for generating a random spanning tree: 
Just take K-'(XI, . . .,Xn) with XI , .  . .,X,, independent and identically dis-
tributed according to the weights of the random mapping F. 

The tree can be recovered from the sequence by successively assigning to the 
Ki(f )'s their successors Kj( f ). Remembering the rule of construction of the 
Ki(f )'s, one gets the arrangement illustrated in Figure 3. 

Figure 3 
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Formally 

K = m a x {  . n} \ { K. K K i , K } }  I s  i s n ,  

in our example: K; ,  K i ,  K; ,  .. .,KA = 7,6,5,4,8,2,1,3.  
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