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LXA*B* = T - LXAB, LXB*A* = T - LXBA, we have L AXB + L BAX + 
LABX = LACB + L BAC + LABC. Hence, by Girard's formula, we have 
IABXJ = JABCJ. H 

For a different proof of Lexell's theorem, see L. Fejes T6th, Lugerungen in der 
Ebene auf der Kugel und im Raum, Springer-Verlag, Berlin, 1972, p. 23. 
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A Characteristic Property 
of Differentiation 

Khristo Boyadzhiev 

We offer here a simple exercise in calculus with a flavor of functional analysis. The 
differentiation operator D : f -.f '  is a fundamental operator in calculus and it is 
interesting to consider what properties distinguish it from all other operators on 
functions. One important theorem says that if a differentiable function f(x) has a 
relative minimum (or maximum) at x = a,  then f l (a )  = 0. As we shall see now, 
this property "almost" characterizes D.  

Notation. For convenience we consider only polynomials. Let P be the set of all 
polynomials and let p,, n = 0,1, . . . , be the basic polynomials: 

p o ( x )  = 1, p l (x )  = x,  . . . , pn(x )  = xn ,. . . . 
When S : P -. P is a linear operator, we denote its action on p E P by S[p]. Thus 
6[p]  is again a polynomial and its value at some number x is written as S[p](x). 

Theorem 1. Let S : P + P be a linear operator. Then the following are equivalent: 

(i) Ifp has a relative minimum at x = a,  then S[p](a) = 0. 
(ii) 6 = S[pl]D. 

In particular, if S[pl]  = p,, then 6 = D. (Here "minimum" can be replaced by 
maximum.") 

Proof The implication (ii) -. (i) is immediate, so we focus on (i) + (ii). First we 
want to show that every linear operator on P has a convenient general form. By 
Taylor's formula, for any polynomial p and any number a:  

" ~ ( ~ ) ( a )  k 

P (X)  = E7(.-a> . 
k=O 

The sum is finite and we write "con just for convenience. Applying 6 to both sides 
(as polynomials of x, with a fixed) we obtain 
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where 6[(x - a),] are polynomials of x. Setting 

i.e., evaluating these polynomials at x = a, we define new polynomials g,, k = 

0,1, . . .  . 
It is clear that (2) defines functions of the variable a, but why are these 

functions polynomials? Good question! To answer it we use the binomial formula 
for (x - a), and the linearity of 6. Now (1) can be written in the form 

m 

or simply 

This is the representation we need: the action of 6 is expressed in a simple way in 
terms of the polynomials gk.  Notice that we did not use here property (i). 
Therefore, the general representation (3) is true for every linear operator on the 
polynomials. 

It turns out that under condition (i) we have g, = 0 for every k > 1. Indeed, 
consider the polynomial 

which is specially designed to serve our purpose. Here a and A are arbitrary real 
numbers and the integer k > 2. We have f l(a)  = 0, f"(a) = 1, so f has a relative 
minimum at x = a .  According to property (i) 

6 [ f  ](a)  = g2(a> + Ag,(a) = 0 

Since this is true for all A and a, we conclude that g, = 0 identically for all k > 1. 
Also, go = 6[po]= 0, as p o  has minimum at each number. Finally, using the 
linearity of 6 we obtain 

g d a )  = 6 [ ( x  - a ) l ( a )  = PI -apol(a)  

= s [ ~ l l ( a >- a6[pol (a> = s [ p l I ( a >  

Therefore, the representation (3) turns into 

PI = 6[p1lp1 
for every polynomial p.  

The same proof gives the following. 

Theorem 2. Let 6 :P +P be a linear operator with thefollowingproperty (Minimum 
Principle): 6[p](a) 2 0 whenever a polynomial p has a relative minimum at .some 
number x = a.  Then 6[p]  = g1p1+ g2pUfor all p E P ,  where the polynomials g,, g, 
are defined in (2) and g, 2 0. 

Theorem 2 naturally extends to polynomials of many variables: any linear 
operator 6 :P + P satisfying the Minimum Principle is a second-order elliptic 
partial differential operator. For instance, Markov processes (semigroups) in 
diffusion theory have generators that satisfy the Minimum Principle [I]. There-
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fore, we conclude that diffusion in nature is governed by second-order elliptic 
partial differential operators. Theorem 2 (in a different form) originates from 
A. Kolmogorov. Some others contributed to it, providing modifications and exten- 
sions: comments and references can be found in [ I ,  Chapter 51 and [2, Chapter 
XIII]. 
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A Weighted Mixed-Mean Inequality 

Kiran S. Kedlaya 

In [4],the author established the following inequality conjectured by Holland [3]. 
Unbeknownst to either of these parties, the same inequality had been earlier 
announced by Nanjundiah [8]without proof. 

Theorem 1. Let x,, x,, . . . ,x ,  be positive real numbers. The arithmetic mean of the 
numbers 

does not exceed the geometric mean of the numbers 
X I  + x2 x ,  + x 2  + ... f x ,  

X I ,  -2 ' " "  n 
Equality holds if and only if x ,  = x ,  = ... = x,. 

Here we prove the following weighted extension of Theorem 1. 

Theorem 2. Let x,, . . . ,x n ,  w,, . . . ,wn be positive real numbers, and define si = w ,
+ ... +wi for i = 1 , .  . . ,n .  Assume that 

Then the weighted arithmetic mean of the numbers 

does not exceed the weighted geometric mean of the numbers 
w1 w2 w1 w2 wn 

X I ,  -X1 + - X 2 , .  . . , - X I  + - X 2  + ... + -x, 
$2  $2  S n S n Sn 

when each mean is taken with weights w,/s,, w2/s,, . . . ,wn/s,. In other words, 
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