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fore, we conclude that diffusion in nature is governed by second-order elliptic 
partial differential operators. Theorem 2 (in a different form) originates from 
A. Kolmogorov. Some others contributed to it, providing modifications and exten- 
sions: comments and references can be found in [ I ,  Chapter 51 and [2, Chapter 
XIII]. 
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A Weighted Mixed-Mean Inequality 

Kiran S. Kedlaya 

In [4],the author established the following inequality conjectured by Holland [3]. 
Unbeknownst to either of these parties, the same inequality had been earlier 
announced by Nanjundiah [8]without proof. 

Theorem 1. Let x,, x,, . . . ,x ,  be positive real numbers. The arithmetic mean of the 
numbers 

does not exceed the geometric mean of the numbers 
X I  + x2 x ,  + x 2  + ... f x ,  

X I ,  -2 ' " "  n 
Equality holds if and only if x ,  = x ,  = ... = x,. 

Here we prove the following weighted extension of Theorem 1. 

Theorem 2. Let x,, . . . ,x n ,  w,, . . . ,wn be positive real numbers, and define si = w ,
+ ... +wi for i = 1 , .  . . ,n .  Assume that 

Then the weighted arithmetic mean of the numbers 

does not exceed the weighted geometric mean of the numbers 
w1 w2 w1 w2 wn 

X I ,  -X1 + - X 2 , .  . . , - X I  + - X 2  + ... + -x, 
$2  $2  S n S n Sn 

when each mean is taken with weights w,/s,, w2/s,, . . . ,wn/s,. In other words, 
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Equality holds i f  and only i f x ,  = = x,. 

The constraint (1) might not be the weakest possible, but some constraint is 
definitely necessary; for example, one needs to have 

or else (2) fails for x, >> xn-, >> >> x,. Preliminary calculations suggest that 
this condition might even be sufficient, but a proof seems difficult. Theorem 2 is 
asserted without any condition on the weights in [I, pp. 122-1231; of course the 
proof given there is incorrect. 

The ingredients of the proof of Theorem 2 are the same as in [4], except that we 
use induction to simplify the computations; one may unravel the induction to 
obtain a proof that, in the case of equal weights, coincides with the proof in [4]. A 
different inductive proof of Theorem 1, using Lagrange multipliers, appears 
in [SI. 

Proof We prove Theorem 2 by proving an analogue of Rado's inequality [2, 
Theorem 601 in this setting. Namely, if L,  and R, denote the left and right sides 
of (2), we prove that 

for n > 1. We note in passing that a similar argument gives an analogue of 
Popoviciu's inequality [9]: 

sn(Ln - RE) 2 ~ n - I ( ' , - 1  - Rn-1). 
Unraveling (3), we see that it is equivalent to 

We prove this inequality in two steps. First, we observe that 

since wjs, 2 w,sj by (I), we may apply the weighted arithmetic-mean, geometric- 
mean inequality to each summand on the right side and obtain 

Second, we apply Holder's inequality to get 

Together, (5) and (6) imply (4), and (2) now follows by induction on n (since 
equality vacuously holds for n = 1). The equality condition also follows by induc- 
tion: if equality holds in (2), then equality in (3) forces x,  = = x,-, by 
hypothesis, and equality in (6) forces x, = x,. 
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We mention here three ways in which Theorem 2 can be extended easily. First, 
one can replace the arithmetic and geometric means by the r-th and s-th power 
means, respectively, for any r > s; the corresponding analogue of Theorem 1 is 
formulated in [6]. Recall that for r # 0, the r-th power mean of x,, . . . ,x, with 
weights w,, . . . ,w, is given by 

Extending by continuity to r = 0 yields the weighted geometric mean. The state- 
ment of the inequality then becomes 

the Rado and Popoviciu-type inequalities become 

and the proofs carry over upon replacing the weighted arithmetic-mean, 
geometric-mean inequality by the weighted power mean inequality, and Holder's 
inequality by Minkowski's inequality [2, Theorem 241. This last inequality appears 
to hold for all k E [s, r], but I do not have a proof. 

Second, one can prove a analogue of Theorem 2 for Hermitian matrices, using 
the arithmetic and harmonic means, following Mond and PeEariC [7], who proved 
such an analogue of Theorem 1using a matricial Minkowski inequality. 

Third, one may use a straightforward limiting argument to deduce the following 
continuous analogue of Theorem 2. We leave the formulation of the corresponding 
power mean generalization to the reader. 

Theorem 3. Let f(x) and w(x) be continuouspositive-valuedfunctionson [0, 11, and 
let W(x) = 1; w(t) dt. Assume that w(x)/ W(x) is nondecreasing on (O,l]. Then 

Finally, we use Theorem 2 to generalize a well-known inequality of Carleman: 
for a sequence {a,}:=, of positive real numbers with Can < m, 

m m 

C ( a l  ak)'Ik < e C a k .  
k = l  k = 1 

It was observed in [3] and in [8] that this inequality follows from Theorem 1. We 
refine this observation slightly to obtain a weighted version of Carleman's inequal- 
ity. Surprisingly (to the author, at least), the constant on the right side does not 
depend on the weights! 

Theorem 4. Let w,, w2, . . . be a sequence of positive real numbers, and define 
si = wl + +wi for i  = 1,2 . . .  . Assume that 

w1 w2- 2 - 2 a * . .  

81 8 2  

Then for any sequence a,, a,, . . . of positive real numbers with Ckwkak < m, 
m m 

C wk awl/sk1 azkIsk < e wkak.  
k = l  k = l  



Proot Taking x, = a, for k = 1, .  . .,n in Theorem 2, we obtain 

Of course C;=,wiai I C:='=,wiai,and so 

In addition, using partial summation and the bound logx <x - 1for x > 0, we get 

Sn Wk 
= exp z-(logsn - logs,)

S;l/s" ... S,W"/s" 
k = l  Sn 

n - 1  S, 
= exp z-(logsk+, - logsk) 

k = l  Sn 

Thus we have the desired inequality except with n in place of w, but taking n -+ w 

gives what we want. 

Again, one can easily state and prove power mean and continuous analogues, 
and again the conditions on the weights are probably not the weakest possible. 
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