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10744. Proposed by Peter Lindqvist, Norwegian University of Science and Technology, 
Trondheim, Norway, and Jaak Peetre, University of Lund, Lund, Sweden. Fix p > 0, and 
define functions S ( x ) ,  C ( x ) ,  and T ( x )for sufficiently small x by 

dt  d t  T ( x )  d t  
x = 1%"' x = L( 1  - ' (1  - t ~ ) ( ~ - l ) l ~  (1+tp ) ' /p .t p ) ( ~ - l ) / ~  ' 

Show that S(x)P + C(x)P = 1 and that T ( x )  = S ( x ) / C ( x ) .  The case p = 2 yields the 
familiar trigonometric formulas. 

10745. Proposed by M. J. Pelling, London, England. For n 2 1, let f ( n )  be the number of 
solutions (r ,  s ,  t )  in positive integers to the Diophantine equation rst  = n(r  + s + t ) .  
(a) Prove that f ( n )  = ~ ( n ' / ~ + ' )for every 6 > 0. 
(b)* Prove that f ( n )  = O ( n s )for every 6 > 0. 

SOLUTIONS 

Using the Walls to Find the Center 

10386 [1994, 4741. Proposed by Jordan Tabov, Bulgarian Academy of Sciences, Sojia, 
Bulgaria. Let a tetrahedron with vertices A l ,  A2, A3, A4 have altitudes that meet in a point 
H .  For any point P ,  let P I ,  PI,  P3, and Pq be the feet of the perpendiculars from P to 
the faces A2A3A4 ,  AgA4A1, A4AlA2, and A1A2A3, respectively. Prove that there exist 
constants a l ,  a2, ag, and a4 such that one has 

for every point P .  

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. More 
generally, let H and P be any two points in the space of the given tetrahedron and let P I ,  
4,Pg , P4 be the feet of the lines through P parallel to H A  1 ,  HA2, H A 3 ,  HA4 in the faces 
of the tetrahedron opposite A 1 ,  A2, Ag , A4, respectively. Then there exist constants a l ,  a2, 
ag, aq, independent of P ,  such that 

Let V denote the vector from an origin outside the space of the given tetrahedron to any 
point V in the space of the tetrahedron. Then H and P have the representations (barycentric 
coordinates) 

Since PI has the representation PI = r2A2 + r3A3+ r4A4,where r2 + r3 + rq = 1 ,  we 
must have 

r2A2+r3A3 +rqA4 - P  = h l ( H - A l ) .  
+

Since A l ,  A2 ,  A 3 ,  A4 are independent vectors, we get hl = u l / ( l  - X I ) ,  so that PP1 = 
(P1- P) = (H - A l ) u l / ( l  - X I ) .  Similarly, 

ui(Pi - P )  = (H - Ai)- for i = 1 , 2 , 3 , 4 .
1 - x i  

Choosing ai = 1 - xi ,  we obtain 

X a i ( p i  - P )  = C U ~ ( H - A ~ )--+ 
= H - P =  P H .  

This proof generalizes to give an analogous result for n-dimensional simplices. 

Solved also by J. Anglesio (France), R. J. Chapman (U.K.), M. Golomb, K. Hanes, N. Komanda, 0.P Lossers (The Netherlands), 
and the proposer. 
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