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Random Walks and Plane Arrangements 
in Three Dimensions 

Louis J. Billera, Kenneth S. Brown, and Persi Diaconis 

1. INTRODUCTION. The geometry of hyperplane arrangements in Euclidean 
space is a rich subject, which touches geometry [14], combinatorics [21], and 
operations research [23]. Probability was introduced into the subject by Bidigare, 
Hanlon, and Rockmore [2], who found a natural family of random walks associated 
with hyperplane arrangements. These walks were studied further by Brown and 
Diaconis [6] . One reason this development is exciting is that the walks admit a 
rather complete theory. We introduce the reader to this circle of ideas by 
specializing to the 3-dimensional case (planes in R3).Here we are able to use tools 
from geometry to obtain a surprising formula for the stationary distribution of 
the walk. 

1.1. The geometric setup. Consider a collection d of n planes through the origin 
in R3.We assume throughout this paper that the intersection of the planes is {O } .  
In particular, n 2 3. It is useful to picture the arrangement d via the intersection 
of the planes with the unit sphere S2.See Figure 1 for the case where d consists 

Figure 1. Three great circles on S2. 

of the three coordinate planes. The picture shows the Northern Hemisphere, 
viewed from above the North ~ o i e ;  thus the outer circle is the equator z = 0. 
Adding the plane z = x + y gives the picture in Figure 2. 

Figure 2. Four great circles on s'. 
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The n great circles corresponding to the arrangement JX?' decompose the sphere 
into cells: There are f, vertices, f ,  edges, and f2 regions. When n = 3, for 
example, one has f, = 6, f ,  = 12, and f2 = 8. Only the cells in the Northern 
Hemisphere are visible in the picture, but the Southern Hemisphere has exactly 
the same geometry. Notice that all the regions are triangular in Figure 1.In Figure 
2 there are f ,  = 14 2-dimensional cells: 8 triangles and 6 quadrilaterals, half of 
which are visible. 

The cell decomposition induced by an arrangement has the following special 
property: Given a region C and a vertex u, there is a unique region C' adjacent to u 
that is closest to C, in the sense that C' is separatedfrom C by the minimum number of 
great circles. The region C' is said to be the projection of C on u and is denoted uC. 
We explain in Section 3.2 why it is uniquely defined. Figure 3 shows an example; 
here C' is at distance two from C. 

Figure 3. The projection of C on u. 

1.2. A random walk on the regions. Bidigare, Hanlon, and Rockmore [2] used the 
projection operators to define the following walk on the regions: If the walk is in 
region C, choose a vertex u at random and move to the projection C' = uC. (We 
assume here that the vertices are chosen uniformly, so that all f, vertices are 
equally likely.) This walk is described mathematically by its transition matrix K. The 
rows and columns of K are indexed by the regions, with K(C, C') being the chance 
of moving from C to C' in one step. Thus 

1 
K(C ,  C') = ,A(C, C'),  

where A(C, C') is the number of vertices v of C' such that uC = C'. 
Suppose, for instance, that ~2 consists of the three coordinate planes. The 8 

triangular regions are the intersections with the sphere of the 8 orthants in R3, as 
indicated in Figure 4. For example, the region + - + corresponds to the orthant 
x > 0, y < 0, z > 0. The matrix A is shown in Table 1; one has K = +A. 

Figure 4. The regions correspond to orthants. 


RANDOM WALKS AND PLANE ARRANGEMENTS 




TABLE1 The matrix A. 

Notice that for any region C, the three vertices of C satisfy uC = C; this 
explains the diagonal entries of A. Projection onto each of the remaining three 
vertices flips C to an adjacent region, thus accounting for the three 1's in each row. 
At each step, then, the walk stays in its current region with probability 1/2 and 
otherwise moves to a randomly chosen adjacent region. This example is unusual, in 
that one never moves a distance of more than 1 in any step; typically the walk is 
much more vigorous. 

The lthpower of the matrix K gives the transition probabilities after 1 steps; for 
example, 

which is the chance of moving from C to C' in two steps. After all, to get from C 
to C' in two steps the walk must go to some C and then to C'. 

A fundamental theorem of Markov chain theory [17, Theorem 4.1.41 implies 
that K1(C, C') tends to a limit r (C1) ,  independent of the starting region C: 

K C  C )  ( C )  as 1 -+m. 

(The theorem requires a mild regularity condition, which is satisfied by our chain.) 
Here T is a probability distribution on the set of regions, and T(C') represents the 
chance that the random walk is in C' after a large number of steps from any 
starting region C. The distribution T is called the stationaly distribution of the 
walk. It can be characterized as the unique probability distribution satisfying 

for all C'. This says that T, viewed as a row vector, is a left eigenvector for K with 
eigenvalue 1. 

1.3. Analysis of the walk. Bidigare, Hanlon, and Rockmore [2] determined the 
eigenvalues of K, which turn out to be real (and even rational): 

(a) 1 is an eigenvalue of multiplicity 1. 
(b) For each plane H E&', there is an eigenvalue 

# of vertices on H n S 2  
A, = 

C 

of multiplicity 1. 
(c) 2/f0 is an eigenvalue of multiplicity (f 2  - 2)/2. 
(d) 0 is an eigenvalue of multiplicity (f, - 2)/2 - n -t- 1. 
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A different proof of this can be found in [6], where it is shown further that K is 
diagonalizable. Yet another proof is given in [5]. For a simple example, take n = 3 
again; the 8 eigenvalues are then 1,+,5,+,f ,  f ,  4,O. 

A second result of [2, 61 is a surprisingly simple estimate relating the eigenvalues 
to the rate of convergence to stationarity. Let K; be the distribution of the walk 
started from C after 1 steps, i.e., K&(c') = K1(c,  C'). We measure convergence 
rate by means of the distance IIKL - ~ l defined as follows: If P and Ql are 
probability distributions on a finite set X, then 

The version of the convergence rate estimate given in [6] is 

for any starting region C. When n = 3, for example, the distance to stationarity is 
bounded by 3(f) '  after 1 steps. 

Finally, a method is given in [6] for computing the stationary distribution T, 
though it is not always easy to get a useful formula for .rr by this method. Our main 
result is an explicit formula for .rr in the 3-dimensional case: 

Theorem 1. Let d be an arrangement of n planes in R3 whose intersection is {O}. Let 
.rr be the stationaly distribution of the random walk on  regions of the sphere, as 
described above. If C is a region with i sides, then 

We find this result quite surprising. It is not even obvious to us why all i-gons 
should have the same stationary probability, let alone why this probability should 
be proportional to i - 2. In our n = 3 example, the theorem says that the 
stationary distribution is uniform: .rr(C) = $ for each of the 8 triangles C. 

1.4. Organization of the paper. In Section 2 we make several remarks about the 
main theorem and illustrate it with examples. In Section 3 we explain how to 
describe vertices, edges, and regions by means of sign sequences; this description is 
used in the proof of our main theorem. Section 4 gives some background on 
hyperplane arrangements in order to put the results stated in Section 1.3 into a 
broader context. We also state in Section 4 some of the results of [2, 61 that were 
specialized to the 3-dimensional case in Section 1.3. In Section 5 we show how the 
general theory specializes to card shuffling and random tiling models. We work out 
some 3-dimensional cases of this in detail. Sections 4 and 5 are included mainly for 
motivation; they are not needed for the proof of Theorem 1. The proof of the 
latter begins in Section 6, where we give a geometric description of the matrix K. 
With this description available, it is quite easy to complete the proof; we do this in 
Section 7. Finally, Section 8 contains some pointers to the literature on plane 
arrangements in R3. 

The key arguments of this paper represent the combinatorial essence of a 
hyperplane arrangement as a collection of sequences of signs; see Section 3. This 
can be abstracted to the notion of an oriented matroid. The present project makes 
a nice introduction to these ideas. 
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2. EXAMPLES AND REMARKS 

2.1. General position. The n planes are said to be in generalposition if no three of 
the planes have a nonzero intersection or, equivalently, if only two great circles 
pass through each vertex on the sphere. Many of the examples in this paper are 
in fact in general position; but the simplicia1 arrangements to be discussed in 
Section 2.3 are never in general position unless n = 3, nor are the arrangements in 
Section 5 below. 

It is easy to count cells in the general position case. One finds 

f o  = n ( n  - I ) ,  fl = 2n(n  - I ) ,  and f, = n ( n  - 1) + 2. 

In fact, there are i;ipairs of great circles, each determining a pair of antipodal 

vertices, whence the first equation. For the second equation, note that each of the 
n great circles is cut ilito 2(n - 1) arcs by the other n - 1great circles. [Alterna- 
tively, count the vertex-edge pairs in two different ways to get 2f, = 4f0, so 
that f, = 2fo.] Finally, the third equation can be proved by a straightforward 
inductive argument, or it can be deduced from the first two via Euler's relation 
fo - fl + f 2  = 2. 

The list of eigenvalues A and multiplicities m, given in Section 1.3 becomes 

And the convergence rate estimate (3) is 

This shows that the distance to the stationary distribution is small after 1 = 2 steps 
if n is large. In Section 6.3, after we have a geometric description of the transition 
matrix K,  we describe a family 4,of arrangements of n planes in general position 
such that IIK, - rrll 2 c > 0 for all n. In this sense the walk is close to stationary 
after 2 steps, but not after 1 in general. 

Another feature of the general position case is that if one wants to carry out the 
random walk algorithmically, it is quite easy to pick a random vertex: First pick a 

pair of great circles at random, so that all are equally likely; this defines a pair 

of antipodal points. Now choose one of these two points with probability k. 
Finally, Theorem 1 gives the following formula for the stationary distribution in 

the general position case: 

if C is an i-gon. 
Here are some specific examples: 

Example 1. For n = 3, the arrangement is combinatorially equivalent to that of 
Figure 1.There are 8 triangular regions, and the stationary distribution is T(C) = 

for all C. 
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Example 2. For n = 4 planes in general position (Figure 2) there are 14 regions: 8 
triangles with stationary probability r ( C )  = $ and 6 quadrilaterals with T(C) 
-- -2 

20 ' 

Example 3. With n = 5 planes in general position, the situation is as in Figure 5 
up to isomorphism. There are 10 triangles with T(C) = &, 10 quadrilaterals with 
T(C) = 4 , and 2 pentagons with T(C) = $. 

Figure 5. Five great circles in general position. 

Example 4. With n = 6 or more planes the number of regions of each type can 
vary with the actual arrangement. From the catalogue in Griinbaum [12, 141 one 
sees that up to combinatorial equivalence there are exactly four general position 
arrangements of 6 planes, as shown in Figure 6. The number of i-gons (i = 3,4,5,6) 

Figure 6. Six great circles in general position. 

for each of these four arrangements is shown in Table 2. Each arrangement has 
n(n - 1) + 2 = 32 regions. For each arrangement, the stationary probability of an 

i-gon is E.Note that, for some values of i, some arrangements don't have any 
56 

i-gons. Nonetheless, the stationary probabilities sum to 1. 

TABLE2 The number of i-gons. 
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2.2. The Euler relation. For a given arrangement of n planes, let pi be the 
number of i-sided regions. Since the stationary probabilities in Theorem 1 must 
sum to 1, we get 

We now show that this relation is equivalent to the Euler relation f, - f, + f 2  = 2. 
Rewrite (4) as Zip, - 2Zpi = 2(f0 - 2). The first sum is the number of pairs 
consisting of a region and an edge of that region; since each edge is on exactly two 
regions, this sum equals 2f,. The second sum is f2 ,  so (4) becomes 2f, - 2f2 = 

2(fo  - 2), which is Euler's identity. 

2.3. Simplicia1 arrangements. The arrangement d is said to be simplicial if every 
region on the sphere is a triangle. The simplicial case has long held a special 
fascination for geometers [13, 141. And it is of special interest for the probability 
story also. In fact, every arrangement has some triangles (at least n of them by 
Levi's theorem [14, p. 251); so Theorem 1has the following consequence: 

Proposition 1. The random walk on regions has a uniform stationary distribution if 
and only i f  the arrangement is simplicial. 

There are three known infinite families of simplicial arrangements and 90 
"sporadic" examples. It has been conjectured that there are no more infinite 
families and at most finitely many additional sporadic examples; see [14, p. 8, 
Conjecture 2.11. A catalogue showing the first 89 sporadic examples can be found 
in [13], and the 90th is in [14]. (Note: It is stated in [I41 that there are 91 sporadic 
examples, but the arrangements called A,(17) and A,(17) in [13] have been shown 
to be isomorphic; see [IS,p. 591.) Many of the examples have a great deal of 
symmetry, and one is therefore not surprised when the stationary distribution turns 
out to be uniform. But there is one known example ([14, pp. 8-91) of a simplicial 
arrangement whose group of combinatorial symmetries is trivial. Nevertheless, the 
walk on the regions has a uniform stationary distribution. This example, which has 
n = 28, is shown in Figure 7 in its projective representation. We discuss such 

Figure 7. A simplicial arrangement with no symmetry (projective picture); the line at infinity is 
included. 
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representations in Section 8; for now, suffice it to say that we get the spherical 
representation by drawing the lines in Figure 7 as great semicircles on the 
Northern Hemisphere. Parallel lines yield great semicircles with the same end- 
points on the equator. 

2.4. Arrangements of pseudocircles. The theory developed in [6] and in the 
present paper goes through if the family of great circles is replaced by a family of 
"pseudocircles," i.e., simple closed curves on the sphere that are not necessarily 
great circles but merely intersect as great circles would. See [4, 14, 231 for the 
precise definition and many examples. The reason the theory goes through is that, 
as we remarked in the introduction, all of our work is based on the oriented 
matroid underlying the arrangement, and this exists for arrangements of pseudo- 
circles also. Generalizing in this way is of interest because it vastly increases the 
supply of examples. In particular, one obtains seven new infinite families of 
simplicia1 arrangements; see [14, 111. 

3. AN ENCODING OF THE CELLS. In Figure 4 we labeled each region on the 
sphere by a vector (a , ,  a,, a,) of signs +, - .  In this section we give a similar 
encoding of the regions, as well as the vertices and edges, for an arbitrary 
arrangement. This encoding is used in the proof of our main theorem in Section 7. 
The sign vectors are easier to think about if we replace each cell e by the cone 
over e, i.e., by the set of positive scalar multiples of e. We begin by establishing the 
language for talking about these cones. 

3.1. Chambers. The open regions into which R3 is cut by A? are called chambers. 
For example, if d consists of the three coordinate hyperplanes, the chambers are 
the 8 open orthants. The regions on the sphere that we have been discussing are 
simply the intersections of the chambers with the sphere. 

We can describe a chamber by specifying, for each H €A?,which side of H the 
chamber is on. To formalize this, write x2 = {Hi),,, and let H,f and H; be the 
two open halfspaces determined by Hi. (The choice of which one to call H: is 
arbitrary but fixed.) Then the chambers are precisely the nonempty sets of the 
form 

C =  O H ? ,  
i € I  

where a, = f. The vector of signs (a,),, , provides a succinct description of C. 
Figure 8 illustrates this (using the spherical picture) for the four planes x = 0, 
y = 0, z = 0, z - x - y = 0. The region labeled + + + +, for instance, corre-
sponds to the chamber x > 0, y > 0, z > 0, z - x - y > 0. Notice that the sign 
vectors of the remaining chambers can be filled in once + + + + has been 
identified; just move from chamber to chamber, crossing one plane at a time and 
recording the appropriate sign change. 

u 

Figure 8. Sign vectors for four planes in general position. 
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3.2. Faces, products, and projections. The chambers are defined by finitely many 
linear inequalities, so they are polyhedra. They have faces, which are the nonempty 
sets obtained by changing zero or more inequalities to equalities. For example, the 
chamber + + + + in Figure 8 has a face defined by x = 0, y > 0, z > 0, z - x - y 
> 0. We say that this face has sign vector 0 + + +. In general, the sign vector of a 
face F is the vector (a i )  such that 

F = nHUl, 
i € I  

where aiE {+, -, 0) and Hi0 = Hi. In Figure 8, the chamber + + + + has three 
faces of codimension 1, with sign sequences 0 + + +, $0  + +, and + + + 0. 
These correspond to the three sides of the triangle labeled + + + + in Figure 8. 
Note that + + 0 + does not occur, because it would correspond to the inconsis- 
tent set of conditions x > 0, y > 0, z = 0, z - x - y > 0. 

Let %? be the set of chambers and let St be the set of faces of chambers; note 
that %? c5" according to our conventions. Somewhat surprisingly, there is a 
naturally defined product on 5" that makes it a semigroup: Given F ,  G E St with 
sign vectors a ( F ) ,  a (G) ,  their product FG is the face with sign vector 

This has a geometric interpretation: If we move on a straight line from a point of F 
toward a point of G, then F G  is the face we are in after moving a small positive 
distance. 

Given F E 5" and C E %?,their product F C  is again a chamber, called the 
projection of C on F .  It can be characterized as the nearest chamber to C having 
F as a face. Here "nearest" refers to the number of hyperplanes in A? separating C 
from FC. This proves the existence of the projection operators that were used to 
construct the random walk in Section 1. 

We continue to identify chambers and faces with their intersections with the 
sphere. Thus we have a cell decomposition of the sphere, with a semigroup 
structure on the set of cells. The next subsection illustrates the use of sign vectors 
and the semigroup structure. 

3.3. The diameter of the walk in R3. Consider an arrangement in R3 and the walk 
on regions defined in Section 1. It is easy to see that there is an integer 1 > 0 such 
that K'(c, C') > 0 for all C, C'; in other words, one can get from any region to 
any other in 1 steps. The smallest such I is called the diameter of the walk. As an 
example, consider the arrangement of three planes shown (in its spherical repre- 
sentation) in Figure 1. By inspection, to get from a chamber to its antipode by 
steps of the walk (through a choice of vertices) takes three steps, and this is in fact 
the diameter. 

Proposition 2. The diameter of the walk based on  n planes in R3 is always either 2 or 
3. It is 2 if n 2 5 and the planes are in general position. 

Proo$ One can never get from a region C to its antipode - C  in one step; in fact, 
each vertex u has at least two 0's in its sign vector, so multiplying by u cannot 
change all the signs of C. This shows that the diameter is at least two. 

Consider two regions C, C', with C' an m-gon. Assume, to simplify notation, 
that the sign vector a' of C' has q' = + for all j and that the first m components 
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correspond to the m sides of C'. Then C' is the unique region whose sign vector 
has + in its first m positions. If m 2 4, we can find vertices u, w of C' such that u 
is on two of the sides of C' and w is on two different sides. Thus the sign vector of 
u has 0 in two of the first m slots and + in the rest, and similarly for w, with the 
0's of u and w in disjoint positions. The product uwC in the semigroup Ftherefore 
has + in its first m positions, i.e., uwC = C', and we can get from C to C' in two 
steps. This does not work if C' is a triangle (m = 3), but in that case we can get 
from any C to C' by using all three of the vertices of C'. Thus we have proved that 
the diameter is at most 3. 

Finally, suppose that the planes are in general position, that m = 3, and that 
n 2 5. Let w be a vertex on two of the great circles other than the three forming 
the sides of C'. In view of general position, the first 3 components of the sign 
vector of w are nonzero. Replacing w by -w if necessary, we may assume that 
two of these 3 components, say the first two, are +.  Let u be the vertex of C' 
whose sign vector has 0 in the first two slots. Then uw has + everywhere, so we 
can get from C to C' in two steps. ¤ 

4. HYPERPLANE ARRANGEMENTS. This section and the next are intended to 
provide some context for the seemingly strange random walk introduced in Section 
1. We consider here arrangements of hyperplanes in spaces of arbitrary finite 
dimension d. The reader who wants to proceed to the proof of the main theorem 
may skip ahead to Section 6. 

A good reference for the theory of hyperplane arrangements is the book by 
Orlik and Terao [20]. See also [19, 4, 231 and, for a concise summary of the basic 
concepts, [6, $21. Throughout this section A? = {H,},,,denotes a finite set of linear 
hyperplanes (subspaces of codimension 1) in a finite dimensional real vector space 
V. One often assumes that the intersection of the hyperplanes is the trivial 
subspace, as we have been assuming when V = R3.There is no loss of generality in 
making this assumption; for if it fails, then we can replace V by the quotient space 
V/VO,where Vo= n ,, ,HI. 

4.1. Chambers, faces, and products. The open regions into which V is cut by A? 
are again called chambers. More precisely, the chambers are the connected 
components of the complement of Ui,  ,H, in V. As in the 3-dimensional case, 
chambers and their faces are encoded by sign vectors (a,)i, ,,where a,E { +, -,0). 
The definition of the product of faces also remains unchanged, so we have a face 
semigroup Fcontaining the set %? of chambers, with F C  c %? for F E F ,  C c E. 

Remark. The faces are in 1-1 correspondence with their intersections with the 
unit sphere. If ni,, Hi = {O}, these intersections give a cell-decomposition of the 
sphere, as in the case V = R3. 

4.2. A walk on the chambers. We may specify a random walk on E by assigning a 
weight w, to each F E F.These weights satisfy w, 2 0 (many may be zero) and 
C, ,,w, = 1. Given a starting chamber C,, the walk proceeds by choosing from 9 
with replacement, with w, the chance of picking F each time. This generates 
choices F,, F,, F,, . . . . The walk proceeds by multiplying by Fi at stage i, i.e., by 
projecting onto Fi. Thus it goes 
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The chance of moving from C to C' in one step is 

The walk of Section 1 is based on n planes in R3 with w, = 0 unless F is a half 
line (so that its intersection with the sphere is a point), and w, = l / f ,  for all half 
lines. 

4.3. Analysis of the walk. As we remarked in the introduction, the hyperplane 
walks admit a rather complete theory. Bidigare, Hanlon, and Rockmore [2] give all 
the eigenvalues of the matrix K in a simple closed form. (We stated a special case 
of their result in Section 1.) Brown and Diaconis [6] prove diagonalizability of K 
and calculate eigenvalues using a chain complex given by the decomposition of the 
sphere by the hyperplanes. Brown [5] translates the walk to a semigroup setting 
and works out the appropriate Fourier analysis to get another proof of these 
results. The following result from [6] describes the stationary distribution and gives 
a bound on the convergence rate: 

Theorem 2. Let d be a hyperplane arrangement. Let {w,) be a probability distribu- 
tion on  the set F o f  faces. Let K(C, C') be defined by (5). Then 

(a) K has a unique stationary distribution .rr i f  and only i f  the weights {w,} are not 
concentrated on the faces in a single hyperplane, i.e., if and only if for each 
H ~d there is F g H with w, > 0. 

(b) If the condition in (a) holds, then rr may be described as follows: Sample 
without replacement from Saccording to the weights w,. This generates an 
ordering F,, F,, . . . ,F, of { F  E F:w, > 0). The product F, F, F,,C, is. + .  

independent of C, and is a chamber distributed according to IT. 

(c) If the condition in ( a )  holds, then for any C, E %?and positive integer 1 

Part (c) of Theorem 2 immediately gives the convergence rate bound stated in 
Section 1. And part (b) of Theorem 2 can be used to get the explicit formula for .rr 
in the 3-dimensional case, as stated in Theorem 1. Indeed, we first discovered the 
formula by doing exactly that. It turns out, however, that one can give an easier 
and completely self-contained proof of Theorem 1 by a direct argument based on 
equation (1). That is what we do in Section 7. 

5. TWO EXAMPLES. There are many hyperplane arrangements where the cham- 
bers can be labeled in a natural way by familiar combinatorial objects such as 
permutations or trees and the walk described in Section 4.2 captures a natural 
mixing process. In this section we describe two such examples. The first is the 
braid arrangement, for which the chambers correspond to permutations. The 
action of faces on chambers gives natural shuffling schemes, such as the usual 
method of riffle shuffling a deck of cards, or a list rearrangement scheme used in 
computer science where a card is removed and replaced on top. The second 
example shows how hyperplane arrangements are related to tilings. In particular, 
we describe in some detail a hyperplane arrangement in R3 whose chambers 
correspond to rhombic tilings of a 10-gon. See [2, 61 for further examples. 
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5.1. Tbe braid arrangement and card shuming. The braid arrangement in R" 

consists of the (:I hyperplanes H,, = {(x,,. . . ,x,) : x, = x,} ( i  < j ) .  The cham- 

bers are associated with a common ordering of the coordinates and so with one of 
the d! permutations. When d = 4, for example, one of the 24 chambers is the 
region defined by x, > x, > x, > x,, corresponding to the permutation 1423. 

The hyperplanes H,, intersect in the line x, = ... = x,. The braid arrangement 
therefore gives rise to an arrangement in a (d - 1)-dimensional space, as ex-
plained at the beginning of Section 4. When d = 4, the resulting arrangement of 
6 planes in lW3 may be pictured as in Figure 9. The great circle corresponding to 
H,, is labeled i-j.(The equator is not one of the great circles of the arrangement.) 
Each chamber is labeled with the associated permutation, 

Figure 9. The braid arrangement when d = 4. 

The faces of a chamber C are.obtained by changing to equalities some of the 
inequalities defining C. For example, the chamber x, > x, > x, > x, has a face 
given by x, > x, > x, = x,, which is also a face of the chamber x, > x, > x, > x,. 
This common face is represented by the edge between 2314 and 2341 in Figure 9. 
Similarly, the vertex labeled 2 in the figure corresponds to the face x, > x, = x, = 

x,; it is a face of six chambers, corresponding to the six possible orderings of the 
indices 1,3,4. 

It is useful to encode the system of equalities and inequalities defining a face F 
by an ordered partition (B,, . . . ,B,) of { I , .  . . ,dl. Here B,, . . . ,B, are disjoint 
nonempty sets whose union is 11,. . . ,dl; they are called the blocks of the partition, 
and their order counts. For example, the face x, > x, > x, = x, corresponds to 
the 3-black ordered partition ({2},{3}, {I, 4}), and the face x, > x, = x, = x, [vertex 
2 in Figure 91 corresponds to the 2-block ordered partition ({2}, {I, 3,4}). Notice 
that there is also a (unique) 1-block ordered partition, corresponding to the face 
x, = x, = x, = x,. When we pass from R4 to a 3-dimensional quotient to make the 
hyperplanes have trivial intersection, this face becomes {O}. It does not show up in 
Figure 9 because its intersection with the sphere is empty. 

The action of faces on chambers is easily pictured by thinking of a permutation 
T = (T,, . . . ,T,) as the set of labels on a deck of d cards, with the card labeled T ,  

on top, and so on. The ordered partition B = (B,, B,, . . . )  operates on T by 
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removing cards with labels in B, and placing them on top (keeping them in the 
same relative order), then removing cards with labels in B, and placing them 
next, and so on. Suppose, for example, that d = 10, T = (1,7,3,9,10,4,5,2,6,8), 
and B = ({2, 51, {3, 4, 6, 101, {7}, 11, 8, 9)); then B acting on T gives 
(5,2,3,10,4,6,7,1,9,8). 

The walk on chambers described in Section 4 now yields a variety of shuffling 
schemes, depending on the choice of weights w,.One example that has received 
much attention is the "Tsetlin library," or "random-to-top" shuffle. Here one 
assigns a positive weight w,to each 2-block ordered partition ({i}, {I , .  . . ,d} \ {i}), 
and weight 0 to the other faces. When d = 4, for example, the vertices with 
positive weight are those labeled 1,2,3 in Figure 9 and the one that would be 
labeled 4 if it were visible. [The opposite vertex is shown as an open circle.] In the 
resulting random walk, a card is repeatedly picked at random according to the 
weights w, and is replaced on top. This walk is useful in connection with 
self-organizing list-management schemes [9]. Imagine, for instance, a stack of d 
files, where file i is used with frequency w,.Each time a file is used, it is replaced 
on top of the stack. After the process has been running for a long time, the most 
frequently used files will tend to be near the top. 

The basic walk studied in this paper, where the vertices are weighted uniformly, 
is itself quite interesting when applied to the braid arrangement. Here, we assign 
weight 1 / ( 2 ~  - 2) to each of the 2d - 2 two-block ordered partitions. The corre- 
sponding shuffling mechanism consists of "inverse riffle shuffles." In an ordinary 
riffle shuffle a deck of cards is divided into two piles, which are riffled together. 
The inverse chooses a set S of cards, which are removed ("unriffled") and placed 
on top; the 2d - 2 proper nonempty subsets S are all equally likely to be unriffled. 
This is very closely related to a standard model for riffle shuffling. See [2, 61 for 
further details and references to earlier work. 

To conclude, let us apply the results of Section 1.3 to the walk when d = 4 and 
the vertices are chosen uniformly. There are 14 vertices, 36 edges, and 24 regions. 
The stationary distribution is uniform because each of the regions has three sides. 
The eigenvalues and multiplicities (A, m,) are (1, I), ($,6), ($,l l ) ,  and (0,6). After 
shuffling I times, the distance to stationarity satisfies 

This bound shows that 1 = 5 shuffles suffice to make the distance to stationarity 
smaller than 1/10. 

5.2. Arrangements and tilings. We discuss now an example of an arrangement in 
R3 in which the chambers correspond to certain tilings of a centrally symmetric 
10-gon. The walks described in this paper can then be used to generate random 
tilings. Such tilings are of interest to physicists who study quasicrystals; see [S, 161 
and the references cited there. This is an example of a very general theory whereby 
hyperplane arrangements can be associated with a set of tilings of special convex 
polytopes called zonotopes [3, 641. A good introductory reference for the material 
in this subsection is [23, Lecture 71 

Given n painvise linearly independent vectors v,, . . . ,v, E Rd, we define a 
convex polytope known as a zonotope by 
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Figure 10. Five vectors in IW' and the 10-gon they generate. 

We call the ui the zones of Z(u,, . . . ,u,). When d = 2, Z(u,, . . . ,u,) is a centrally 
symmetric 2n-gon; this is illustrated in Figure 10 for the case d = 2 and n = 5, 
where the resulting zonotope is a 10-gon. 

We are interested in tilings of this 10-gon by the parallelograms generated by 

the (:) = 10 pairs ui, u,, 1 i i < j i 5. Since we may take all the ui to have the 

sami lkngth without loss of generality, we call these tilings rhombic tilings. Two 
such rhombic tilings are illustrated in Figure 11. It is a consequence of the work of 
Billera and Sturmfels [3] that the set of all such tilings of this 10-gon corresponds 

to the chambers of an arrangement of = 10 hyperplanes in R3. We describe 

this arrangement in some detail now. 

Figure 11. Two tilings of the 10-gon by parallelograms. 

Every triple ui, u,, uk of the 5 given vectors, 1 I i < j < k i 5, satisfies a unique 
(up to nonzero scalar) linear dependence relation. We write it as a relation among 
u,, uz, u3, u4,  u5, SO it is given by a vector of length 5. Let r = {i, j, k} and let the 
dependence be given by z' E R5; thus C?=,Z;U, = 0 and zj= 0 if 1 6 r . The span 
V of the z', over all triples T c {1,2,3,4,5}, is the nullspace of the rank 2 matrix 

where u, = (x,, y,), and so is 3-dimensional. For each triple r ,  we denote by 
H' c R5 the hyperplane having zT as its normal (i.e., HT= {x E ~~1 (x ,  zT)  = 0)). 
The hyperplanes {H'} have a 2-dimensional intersection V (the row space of A).  
We therefore get an arrangement in the 3-dimensional space R 5 / v '  (which we 
may identify with V), as explained at the beginning of Section 4. This may be 
pictured as in Figure 12. Each great circle is labeled by the corresponding triple T. 

Note that the 4 great circles corresponding to triples T c {2,3,4,5} intersect at a 
pair of antipodal vertices, one of which is labeled 1 in Figure 12. This can be 
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Figure 12. The arrangement associated to tilings of a 10-gon. 

explained by straightforward linear algebra, which we leave to the interested 
reader. [Hint: Consider the matrix obtained from A by deleting the first column.] 
The other multiple intersections (with labels 2,.  . . ,5)  can be explained in a similar 
way. 

We claim that the chambers of this arrangement correspond to the rhombic 
tilings of the 10-gon. To understand why this might be so, take any point 
6' = (6',, . . . ,8,) E R5 not on any of the hyperplanes HT.  Lift the zones ui to-
Q = (x,,y,,  6',), i = 1, . . . , 5 ,  and form the 3-dimensional zsnotope Z := 

Z($, . . . ,Z5) c R3. One can show that each 2-dimensional face of Z is a parallelo- 
gram. [Brief explanation: One first observes that the 2-dimensional faces of a 
3-dimensional zonotope are translates of planar zonotopes spanned by subsets of 
the generating zones; see [23, p. 2051. These are all parallelograms unless three of 
the lifted zones q,Zj ,  & are linearly dependent. A linear dependence relation 
among these lifts would be a multiple of zT,where T = {i, j, k } . This would imply 
6' E HT,  contradicting the choice of 0.1 Projecting the faces on the bottom of 
2 (i.e., the faces whose outer normal has a negative third coordinate) onto the 
10-gon Z(u,, . . . ,u,), one gets a rhombic tiling of the 10-gon. Further argument 
shows that any other 6' in the same chamber gives the same tiling and that all 
rhombic tilings of the 10-gon arise in this way. 

An example of what might happen if the original zonotope were a hexagon and 
the lifted zonotope a 3-cube is shown in Figure 13; depending on its orientation in 
R3, the bottom of the cube would look like one of two tilings shown. 

A move between adjacent chambers in the arrangement in Figure 12 corre- 
sponds to a simple local change in the corresponding tiling: for some embedded 
"3-cube" in the tiling, flip just that portion of the tiling as shown in Figure'l3. So 

Figure 13. A flip of a 3-cube 

RANDOM WALKS AND PLANE ARRANGEMENTS [June-July 



the chamber corresponding to a tiling is an i-gon if and only if the tiling has i 
embedded 3-cubes; for example the tiling on the left in Figure 11 corresponds to a 
triangular region, while that on the right corresponds to a pentagonal region. 

We note that the situation described here is a piece of a very general theory of 
subdivisions [3, 11. In particular, given a d-dimensional zonotope Z with n zones in 

R$ one can associate with it an arrangement of at most j d :  hyperplanes in 
~ a - dwhose chambers correspond to certain tilings of Z. In our example it turns 

out to be all the rhombic tilings, but, in general, not all tilings can be obtained by 
the lifting procedure described in the example; see [3] for details. When n = d + 3 
the derived arrangement is 3-dimensional, and so theory of the present paper 
applies. 

To conclude, let us apply the results of Section 1.3 to our walk on the tilings of a 
10-gon. There are 40 vertices, 100 edges, and 62 regions, with (p3,p, ,p ,)  = 

(50,10,2). The stationary probability of a tiling with i cubes is (i - 2)/76. The 
eigenvalues and multiplicities ( A ,  m,) are (1, I), (i,lo), (A,30), and (0,21). After 1 
steps, the distance to stationarity satisfies 

6. A GEOMETRIC DESCRIPTION OF K. We return to the setting of Section 1, 
where a? is a collection of planes in R3 with trivial intersection, and K is the 
transition matrix of the walk on the regions of the sphere (or, equivalently, on the 
chambers in R3). Recall that, in the notation of Section 1, 

1 
K(C ,  C') = -A(C, C ' ) ,  

f o  

where h(C, C') is the number of vertices u of C' such that uC = C'. Note that 
A(C, C)  is the number of vertices of C and that h(C, -C) = 0. The main result of 
this section is the following formula for A(C, C') when C' # fC: If k is the 
number of sides of C' for which the sign vectors of C and C' agree (that is, the 
number of bounding planes of C that do not separate C from C'), then 

We prove this in Section 6.2 (Lemma 2). We begin by describing the matrix A in 
terms of lunes. 

6.1. Lunes. For a region D and a vertex u of D, let I(u, D)  be the lune 
determined by u and D as in Figure 14. Thus if H ,  and H, are the great circles 
bounding D and passing through u, and if Hif is the hemisphere defined by Hi 

Figure 14. The lune l ( u , D) .  
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that contains D (i  = 1,2), then l(v, D )  is the intersection H T n  H;. Given two 
regions C, C', we define the lunacy of C with respect to C' to be the number of 
vertices v of C' such that C c l(v, C'). 

Proposition 3. For any two regions C, C', A(C, C') is equal to the lunacy of C with 
respect to C'. 

Proof: Assume, to simplify notation, that the sign vector of C' consists of all + 's. 
For a vertex v of C', we have vC = C' if and only if the sign vector of vC is + in 
the positions corresponding to the sides of C'. Now v has + in all of these 
positions except two, where it has 0; so vC = C' if and only if C already has + in 
the two positions corresponding to the sides of C' that intersect at v. But this says 
precisely that C G I(v, C'). 

Understanding K, then, reduces to calculating lunacy. Figure 15 shows a simple 
example; here C is in the lune I(v, C') but not the other two C'-lunes, so 
A(C, C') = 1. On the other hand, C' is in two of the four C-lunes, so A(C', C)  = 2. 
Note the lack of symmetry. 

Figure 15. A(C, C' )  = 1. 

There is a similar description of the transition matrix for the higher-dimensional 
hyperplane walks described in Section 4. One replaces the lunes by sets l(F, C), 
where C is a chamber, F is a face of C, and 1(F, C) is an intersection of open 
half-spaces, one for each bounding hyperplane of C. What's special about the 
3-dimensional case, however, is that lunacy is easy to compute. The computation 
depends on a simple geometric fact about polygons, related to "shellability." 

6.2. Shellability and the calculation of lunacy. Consider a planar convex polygon 
P whose sides are extended to form lines I,, . . . ,1,. If the polygon is viewed from 
any point x outside of it, one sees a contiguous set of its edges, and these are 
precisely the edges whose lines separate x from P. See Figure 16; here it is 

Figure 16. The sides visible from x. 
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assumed that P is on the positive side of each I,, and the lines are labeled with f 
to indicate which side x is on. 

All of this works equally well on the sphere: 

Lemma 1(Shelling lemma). Given a sphericalpolygon bounded, in cyclic order, by n 
great circles I,, . . . ,I,,, suppose that the interior of the polygon is on the positive side of 
each of these circles. Then any point on the sphere not on any of the circles is on the 
positive side of a cyclically contiguous subset of them. 

An analogue of the shelling lemma holds for convex polytopes in d-dimensional 
space [7] and for oriented matroids [18]. In the former case, contiguity is replaced 
by "shellability" of the set of visible faces, whence the name "shelling lemma." The 
latter case implies that everything we have done works for arrangements of 
pseudocircles (Section 2.4). See [23] and [4] for discussions of all of these topics. 
We omit a proof of the shelling lemma because it is treated thoroughly in the 
references cited and because, in the present low-dimensional case, it is quite 
believable from the picture. 

Lemma 2 (Lunacy lemma). Given two regions C and C' that are neither equal nor 
opposite, we have 

h ( C ,  C') = k - 1, 

where k is the number of sides of C' for which the sign vectors of C and C' agree. 
Consequently, 

h ( C ,  C') + A( -C,  C') = i - 2 

if C' is an i-gon. 

In Figure 15, for example, C' has 3 sides, one of which separates C from C'; so 
k = 2 and A(C, C') = 1, as we have already observed. 

Proof of the lunacy lemma. Assume that C' has sign vector + + ... + and apply the 
shelling lemma to the polygon C', with x equal to any interior point of C. It 
follows that the sign pattern of C, restricted to the sides of C', is a cyclic 
permutation of the string + + ... + - - ... -, where there are k +'s. Every pair 
of cyclically consecutive +'s corresponds to a lune of C' that contains C. Since 
there are k - 1 such pairs, the lunacy h(C, C') is indeed k - 1. To prove the 
second assertion of the lemma, note that for each of the i sides of C' either C or 
-C has the same sign as C'. Thus the k's for C and -C sum to i. 

Remark. If C = C', then A(C, C') = i, while if C = -C' then A(C, C') = 0. 
Hence A(C, C') + A( -C, C') = i rather than i - 2 if C = kC'. 

6.3. Convergence rate examples. Recall from Section 2.1 that the walk on regions 
is close to stationary after 2 steps for an arrangement of n planes in general 
position if n is large. Now that we understand the matrix K, we can give an 
example where the walk is not close to stationary after 1 step, as advertized in 
Section 2.1. In other words, we want 1 1  Kc - to be bounded away from 0 for an 
infinite family of general position arrangements with larger and larger n. We use a 
family of arrangements d,constructed by Fiiredi-Palisti [lo], for which p,, the 
number of triangles, is asymptotic to 2n2/3 as n -t a.(Recall from Section 2.1 
that f,, the total number of regions, is about n2. So there are about n2/3 
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non-triangular regions. Most of these are hexagons.) Fix a starting region C. We 
claim that for any triangular region C', either A(C, C') = 0 or h(C, -C1 ) = 0. To 
see this, we may assume C' # fC. Then h(C, C') + A( -C, C') = 1 by the lunacy 
lemma, so one term is 0. Our claim now follows from the fact that A(-C, C') = 

A(C, -C'). 
In view of the claim, there are p,/2 triangular regions C' that cannot be 

reached from C in one step. Our main theorem, however, implies that this set F o f  
triangles has stationary probability 

The definition (2) of the distance between probability distributions now implies 
that ( 1  Kc - T I (  2 ~ ( 7 1 ,which tends to 1/6 as n -+ m. Thus the walk for dnis not 
close to stationary after one step. 

Remark. On the other hand, there is a naturally occurring family of arrangements 
9,,for which the walk is close to random after one step. Here g r ,  is the cyclic 
arrangement, consisting of n great circles that form the sides of an n-gon in the 
Northern Hemisphere. There is, of course, also an n-gon antipodal to this one in 
the Southern Hemisphere. gnis a general position arrangement; for n 2 5 there 
are 2n triangles and n(n - 3) quadrilaterals in addition to the two n-gons. The 
cases n = 3,4,5,6 are shown in Figures 1, 2, 5, and 6. A straightforward but 
tedious calculation shows that, for any starting region C, ( 1  Kc - ~(1sc/n for c a 
universal constant; thus the walk for this family is close to random after one step 
when n is large. 

7. PROOF OF THEOREM 1. We are trying to calculate the stationary distribu- 
tion of the walk with transition matrix given by (6). The assertion is that 

if C is an i-gon. There are two ways to proceed. 

Method 1. As we remarked in the introduction, it suffices to show that the 
right-hand side of (7) is a probability distribution satisfying 

T ( C )  K(C ,  C') = ~ ( c ' )  
C 

for all C'. Now we already know, by the Euler relation, that the right-hand side 
sums to 1 (Section 2.2). So it suffices to show, for each C', that 

x ( i ( ~ )- 2) K(C ,  C') = i (C1) - 2, 
C 

where i(C) is the number of sides of C. Equivalently, we must show 

Since i(-C) = i(C), we can replace h(C,  C') on the left by the average 

h ( C ,  C') + A( -C, C') 
M(C,  C') = 

2 
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without changing the value of the sum. In view of the lunacy lemma, the left side of 
(9) becomes 

E ( i ( c )  - 2)M(C,  C') = E ( i ( ~ )- 2) 
i (C1)  

2 

- 2 + 2(i(C1) - 2), 
C C 

where the second term takes account of the fact that M(_+C1,C')= i(C1)/2 
instead of (i(Cr) - 2)/2. Pulling out the factor i(C1)- 2, and recalling that 
cc( i (C) - 2) = 2(f,, - 21, we obtain (9). 

Method 2. We know that 7i exists and is characterized by (8), which can be 
rewritten 

Since A(C, C') = A( -C, -C'), it follows that 7i( -C )  = n-(C). We may therefore 
rewrite (10) as 

with M as in the first proof. Using the lunacy lemma (and taking account of the 
terms in the sum where C = fC'), the equation becomes 

or, since CC7i(C) = 1, 

Solving for n-(C'), we obtain 

as required. W 

This secoild proof is somewhat more satisfying than the first, since equation (7) 
appears naturally, rather than being pulled out of a hat. Note also that the second 
proof did not use the Euler relation; it therefore has the Euler relation as a 
consequence. Note, finally, that Method 2 proves uniqueness of n- (though not 
existence) without appeal to the theory of Markov chains. 

Remark. We are mystified by the factor i - 2 in Theorem 1. To help appreciate 
the mystery (and Theorem 1) let us consider a different random walk on the 
chambers of a hyperplane arrangement, called the local walk. Suppose the walk is 
currently in region C bounded by i hyperplanes. Pick one of the bounding planes 
uniformly at random. The walk moves to the chamber adjacent to C along the 
chosen hyperplane. Call the transition matrix of this walk H(C, C'). If i(C) 
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denotes the number of sides of C, then 

H ( C , C 1 )  = ( i / i ( C )  if C' is adjacent to C 
otherwise. 

For this walk, an i-sided chamber C has stationary probability proportional to 
i = i(C); moreover, this walk is reversible: i(C)H(C, C') = i(C')H(C1, C). The 
more vigorous walk K(C, C') that we have been studying is not reversible except in 
special cases. It is one of only a few families of nonreversible walks where the 
stationary distribution is known explicitly. For the braid arrangement of Section 
5.1, the local walk corresponds to mixing a deck of cards by adjacent transposi- 
tions, whereas the walk of this paper corresponds to the (much faster) riffle 
shuffling. For tilings (Section 5.2), physicists currently use the local walk (cube 
flips) for simulating a random tiling; see [22]. The walk described here may offer 
vast speed-ups. 

8. FINAL REMARKS. The plane arrangements a2 in R 3  that we have been 
considering in this paper occur in the literature under the name line arrangements. 
In fact, a plane through the origin in R3 is the same as a line in the projective 
plane p 2 ,  SO we can think of a2 as an arrangement of lines in the plane. Recall that 
the points of P' are the lines through the origin in R3. Since a line through the 
origin in R3 corresponds to a pair of antipodal points on the sphere s', we get a 
2-to-1 map S 2  -+ p 2 .  The great circles in our spherical pictures are the inverse 
images of the lines in p2under this map. As a practical matter, if p2 is viewed as 
the affine plane with an extra line at infinity, one goes from the projective picture 
to the spherical picture by drawing the projective picture on the Northern Hemi- 
sphere, the line at infinity becoming the equator. 

For a simple example, consider the arrangement of four lines in P2 consisting 
of the three lines shown in Figure 17 together with the line at infinity. The 

Figure 17. Four lines in P'; the line at infinity is included. 

corresponding spherical picture is Figure 2. A more complicated example of a 
projective picture was given in Figure 7. The cell-decomposition of S' that we 
have been using in this paper is obtained by lifting an analogous cell-decomposi- 
tion of P2 .  Thus there is a pair of antipodal cells in S 2  for each cell in p2. 

There is an extensive literature on line arrangements (and "pseudoline" ar-
rangements) going back to the 1820's. Much is known, but there are still many 
open questions; see [14, 111 for surveys. Some of the more interesting results and 
open questions concern the polygon counts pi (i 2 3) where, following standard 
conventions, we now denote by pi the number of i-gons in the cell decomposition 
of P'; this is half of what was called pi in Section 2.A sample result is that for an 
arrangement in general position, one has 
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(The reader can check that this equation holds for each column of Table 2, after 
the numbers in that table are cut in half.) Moreover, given any sequence 
p,, p5,  p6, p 7 , .  . . of natural numbers satisfying (111, one can always find a general 
position arrangement with those polygon counts. One has no control over p,, 
however, and, indeed, very little is known about p,. Equivalently, one has no 
control over the number of lines in the arrangement. Thus we are still very far 
from knowing, for a given n, what vectors (p,, p,, . . . ,p,) can occur. 

See [14, 111for a wealth of further results, conjectures, and open questions. 
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