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A Counting Formula for Primitive 

Tetrahedra in Z 3  


Mizan R. Khan 

1. INTRODUCTION. A primitive polytope is a polytope in n-dimensional Eu- 
clidean space R" whose vertices are (integer) lattice points (points of Z n )  but it 
does not contain any other lattice points in its interior or on its boundary. Pick's 
theorem coupled with the fact that any primitive (convex) polygon has at most 4 
vertices (by Theorem 2.1) allows us to infer that a convex polygon in z2is primitive 
if and only if it is a triangle of area or a parallelogram of area 1. In Z3 matters 
are very different. Specifically, there is no bound on the volume of a primitive 
tetrahedron (see Section 3); but there is an elegant characterization of primitive 
tetrahedra that was discovered more than 30 years ago. This characterization gives 
us a simple formula that counts the number of equivalence classes of primitive 
tetrahedra of a given volume. The goal of this paper is to state and prove this 
formula. 

We begin by defining the terms lattice polytope, vertex, and primitive. 

Definition 1.1. A lattice polytope is the closed convex hull in R" of a finite set 
{u,, . . . ,u,,,} of points of Z", i.e., it is the set 

{ t lu l  + ... +tmu,,,: U1,. . . ,U,,, E Z", 0 5 t l , .  . . ,tni 5 1,tl + ... ft,,? = I}. 

A uertex of a polytope is a point of the polytope that cannot be written as a convex 
combination of other points of the polytope. 

Remark. The lattice polytopes we consider always have non-zero volume. 

Definition 1.2. A lattice polytope in Rn is primitive if the only lattice points it 
contains are its vertices. 

Reeve ([ti] and [9]) and Reznick [lo] use the term fundamental instead of 
primitive; Scarf [I31 uses the term integralpolyhedron. Our preference for using the 
adjective primitive instead of fundamental or integral stems from the usage in [14]. 
The interested reader should look at [14, pp. 98-99] for a discussion of primitive 
sets of vectors and the connection with constructing a reduced basis of a lattice. 

Section 2 is a brief discussion of primitivity in Zn.  We explain why a primitive 
polytope in Z n  has no more than 2'bertices and why a primitive parallelepiped in 
Z" has unit volume. Section 3 is a comparison of primitive triangles in Z2  with 
primitive tetrahedra in Z3. The goals of this section are to explain why there is no 
bound on the volume of primitive tetrahedra and to present a geometric character- 
ization of primitive tetrahedra. In Section 4 we discuss unimodular maps and state 
an analytic version of the geometric characterization. Section 5 is where we discuss 
a formula that counts the number of equivalence classes of primitive tetrahedra for 
a fixed volume; the equivalence relation is defined via unimodular maps. The 
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formula is in Theorem 5.3 and is proved with the aid of Burnside's lemma. The 
final section describes Howe's generalization of Theorem 4.2, which describes all 
primitive polyhedra, not just primitive tetrahedra. Except for the results in Section 
2, we confine our remarks to dimension 3 because the characterizations of 
primitive tetrahedra do not extend to higher dimensions. 

To conserve space we typically write lattice points as row vectors, but in our 
matrix calculations we view lattice points as column vectors. 

2. PRIMITMTY IN Z". We begin by showing that the number of vertices of a 
primitive polytope is bounded, a result that appears as Theorem 1.2 in [13]. 

Theorem 2.1. A primitive polytope in Rn has at most 2" vertices. 

Proof: If there are more than 2" vertices in a lattice polytope P ,  then there are 
two vertices v = (v,, v,, . . .,v,), w = (w,, w,, . . . ,w,) such that vi = wi (mod 2), 
i = 1, .  . . ,n. The lattice point (v + w)/2 belongs to P ,  so P is not primitive. W 

We now discuss lattice parallelepipeds in Rn. We like to think of the lattice 
points in a lattice parallelepiped as the cosets of a quotient group. Suppose P is 
the parallelepiped P = {u + t,u, + t2v2+ ... +tnun: u, v,, v,, . . . ,v,, E Z", 0 I 
t,, t,, . . . ,t, 5 I}. We can consider the sublattice (Zv, @ Zv, @ ... @ Zv,) and 
view the lattice points in P as the cosets of the quotient group Zn/(Zv, @ Zv, 
@ ... @ Zv,). We have found the following result very useful. 

Theorem 2.2. Let v,, . . . ,vn be a set of linearly independent points of Zn. Then the 
quotient group Zn/(Zv, @ Zu, @ ... @ ZU,) has order I det A I ,  where A is the n x n 
matrix whose k-th column is vk, i.e., the order equals the volume of the parallelepiped 
spanned by v,, v,, . . . ,vn. 

For a proof see [14, Theorem 20, p. 491. Let us illustrate Theorem 2.2 and the 
remarks preceding it by examining the parallelogram P in z2whose vertices are 
(0,0), (1,3), (2,2), and (3.5). 

The area of P equals 4. Therefore the quotient group z2/(z(1, 3) @ Z(2,2)) has 
order 4. 

Figure 1. The parallelogram with vertices (O,O), (1,3), (2,2), and (3,5). 
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The 8 lattice points in P represent the cosets of z2/(z(1, 3) @ Z(2,2)) in the 
following way: the zero coset can be represented by any one of the 4 vertices; the 
lattice points (1 , l )  and (2,4) represent the same coset (this coset is its own 
inverse); the lattice points (1,2) and (2,3) represent distinct cosets with one being 
the inverse of the other. Clearly, the quotient group is isomorphic to 2 /42 .  

From Theorem 2.2 and our observation about viewing lattice points as cosets, 
we can easily prove the following theorem about parallelepipeds in Zn. 

Theorem 2.3. The parallelepiped P = {u + t,ul + t2v2+ ... +tnvn: u, u,, u2, . . . ,vn 
E Zn,  0 I t,, t2 , .  . . ,t, I 1) is primitive if and only if uolume(P) = 1 

3. PRIMITIVE TRIANGLES vs. PRIMITIVE TETRAHEDRA. We now compare 
primitive triangles in z2with primitive tetrahedra in z 3 .  Any primitive triangle in 
z2has area i.This is the simplest case of Pick's theorem. 

Theorem 3.1 [Pick 1711. Let P be a lattice polygon in z2.If there are I lattice points 
in the interior of P and B lattice points on the boundary of P ,  then area(P) = 

I +  ;B- 1. 

We refer the reader to [I] for two elementary and elegant proofs of Theorem 
3.1; [2] and [3] are two recent expositions on Pick's theorem in the MONTHLY. 

Reeve [8] observed that the tetrahedron with vertices (0,0,0), (1,0,0), (0,1, O), 
and (1, 1, c) is primitive for any non-zero integer c. Consequently, there is no 
bound on the volume of a primitive tetrahedron and a direct generalization of 
Pick's theorem to R~ is impossible. However, by replacing z3with the fractional 
lattice +z3for a fixed positive integer n, he was able to find a three-dimensional 
analogue of Pick's theorem; we do not pursue this direction. In addition to [8] and 
[9], the interested reader should look at [61, where Reeve's theorem is extended to 
higher dimensions. Other related references are listed on the first page of [2]. 

Another way to show that primitive triangles in z2have area equal to 4 is to use 
Theorem 2.3. It is instructive to see how the argument proceeds and why it cannot 
be extended to give an upper bound on the volume of primitive tetrahedra. 

Suppose T = {u + t,u, + t2u2: u, u,, u2 E z 2 ,  0 I t,, t2 I 1, t, + t2 I 1) is a 
lattice point triangle containing the lattice point w. Let x be the coset of 
z2 / ( zu ,  @ Zu,) that w represents. There is at  least one lattice point in the triangle 
{u + tlul + t2v2: u, u,, u2 E z 2 ,  0 I t,, t2 I 1, t, + t2 2 1) that represents the inverse 
-x. It follows that T is primitive if and only if the associated parallelogram 
P = {u + t,u, + t2u2: u, u,, u2 E z 2 ,  0 I t,, t2 I 1) is primitive. Using Theorem 2.3 
we conclude that T is primitive if and only if area(T) = i. 

Now let T, be the tetrahedron 

T, = {U + tlul + t2u2+ t3u3: U ,  u,, u2, u3 E z 3 ,  0 I t,, t 2 ,  t3 I 1, tl + t2 + t3 I I}. 


The preceding argument shows that T, is primitive if and only if the tetrahedron 


T2 = {u + t,u, + t2u2+ t3v3: u ,u l ,u2 ,u3  E z 3 ,  


0 I t , , t 2 , t 3  I 1 , 2  I t ,  + t2 + t 3  < 3) 

is primitive. But we cannot conclude that the parallelepiped 

P = {U + tlUl + t2U2+ t3u3: U, U,, U2, U3 E 23, 0 I t,, t2 ,  t3 II} 

is primitive since, in addition to T, and T2, there are four other tetrahedra inside 
P that need not be primitive. Therefore, we cannot find a bound for the volume of 
P and use it to give a bound on the volume of TI. 
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Recall that the volume of any lattice point tetrahedron is c/6, where c is a 
positive integer. Suppose 

T,  = {u + tlvl + t2v2+ t , ~ , :  u ,  u,, u,, U, E z 3 ,  0I t,, t,, t, I 1, t, + t2 + t, I I} 

is a primitive tetrahedron and vol(T,) = c/6 with c 2 2. The parallelepiped 

has volume c. By Theorem 2.2 there are c - 1 non-zero cosets in the quotient 
group z3 / (zu ,  @ Zv, CB Zv,). It now follows that there are c - 1latticepoints in the 
interior of P and each one represents a distinct coset of z 3 / ( z  v, @ Z v, @ Z v,). This 
assertion is based on the following two observations: 

1. 	 A coset has a unique representative in P if and only if the representative 
lies in the interior of P. 

2. 	 There are no lattice points on the boundary of P other than the vertices. 
Suppose w = u + t,v, + t,v, + t,v, is a lattice point lying on the boundary 
of P that is not a vertex of P. There are two possible cases. Case 1: Exactly 
1member of the set {t,, t,, t,}, say t,, is an integer. In this case, either the 
lattice point u + tlv, + t,v,, or the lattice point u + (1 - tl)vl + (1 - t,)v, 
lies on one of the faces of T,. Since t,, t, GL Z, neither lattice point is a 
vertex of P. Case 2: Exactly 2 members of the set it1, t,, t,}, say t, and t,, 
are integers. In this case, the lattice point u + t,v, lies on one of edges of 
T,. Since t, @ Z, u + t,v, is not a vertex of TI. Therefore, if P contains a 
lattice point on its boundary that is not a vertex, then T, is not primitive. 

Thus there are c - 1 lattice points in the interior of P. How are these c - 1 
lattice points arranged inside P? The answer to this question gives us a geometric 
characterization of primitive tetrahedra in z 3 .  

Theorem 3.2. Consider the tetrahedron 

T = { u f  tlVl f t2V2f t 3 V 3 : u , U 1 , V 2 , V 3 E ~ 3 , 0 1 t l , t 2 , t 3 1l , t l  + t 2 + t 3 1  I} 

and the parallelepiped 

Then T is primitive if and only if all the non-vertex lattice points in P lie in the interior 
of one of the three diagonal parallelograms of P that do not intersect the interior of T, 
i.e., one of the parallelograms with vertices {u + v,, u + v,, u + v, + v,, u + v, + v,}, 
{ u + v , , ~ ~ + v , , u + v , + v , , u + v , + v , } ,  or { u + v , , u + v , , u + v , + v , , u + v ,  
+ u,}. 

The sufficiency of the stated criterion is trivial and all the work lies in proving 
its necessity. We have been unable to construct a direct geometric proof and we 
pose this as a problem to our readers. We prove Theorem 3.2 by proving an 
analytic version, Theorem 4.2. 

4. UNIMODULAR MAPS. Before we can describe an analytic version of Theorem 
3.2, we need to define the concept of a unimodular map. 

Definition 4.1. The map f:Rn + R" is a unimodular map if (i) f is affine, (ii) f 
preserves volume, and (iii) f maps points in Z n  to points in Z". 
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We leave it to the reader to check the following properties of unimodular maps. 

Theorem 4.1. Let f :  R" -+ Rn be a map and let P be a lattice polytope in Z". 

(i) f is unimodular if and only iff(u) = Mu + v, where M E GL,,(Z), i.e., M is a 
n x n matrix with integer entries and det( M )  = 1, and v E Z". 

(ii) 	Iff is unimodular, then f is invertible and f -' is unimodular. 
(iii) 	Iff is unimodular then f ( P )  and f ' ( P )  are lattice polytopes. Furthermore, f 

maps interior points of P to interior points of f (P) ,  boundary points of P to 
boundary points of f (P) ,  and vertices of P to vertices off (PI.  

(iv) 	If P is primitive, then both f (  P )  and f - P )  are primitive. 

Unimodular maps define an equivalence relation on the set of lattice polytopes 
and so we can consider equivalence classes of lattice polytopes. 

Definition 4.2. Two lattice polytopes PI ,  P, in R" are unimodularly equivalent if 
there is a unimodular map f:R" -+ R" such that f maps P, to P2.If PI ,  P2 are 
unimodularly equivalent we write PI = P,. 

Any two primitive triangles in 2' are unimodularly equivalent. One way to 
prove this is to apply Theorem 2.2. Suppose the triangles 

T, = {u, + tlvl + t2v2: u,,  vl, U, E z 2 ,  0 I t l , t 2  I l , t l  + t, I 1) 

and 

T, = {u, + t,w, + t2w2: u,, w,, w, E z 2 ,  0 I t, ,  t, I 1, t, + t, I I} 

are primitive. Then the associated parallelograms 

P, = {u, +tlUl + t2v2 :  U1,U,,U2 E z 2 , 0  I t l , t 2  I I} 

and 

P , = { u , + t , w , + t , w , : u , , w , , w , E z 2 , 0 1 t , , t 2 1 1 }  

are primitive. Let A be the 2 x 2 matrix whose first column is v, and whose 
second column is u,; and let B be the 2 x 2 matrix whose first column is w, and 
whose second column is w,. Since P, and P, are primitive parallelograms, 
A, B E GL,(Z). The unimodular map f(x)  = B A - ' ~+ (u, - BA-'u,) maps T, to 
T, (and P, to P,). This argument can be used to show that any two primitive 
parallelepipeds in Z" are unimodularly equivalent. 

We now describe an analytic version of Theorem 3.2, which appears as Corol- 
lary 5.7 in [lo]. From here on, T,, ,, ,denotes the tetrahedron with vertices (O,0,0), 
(1,0, O), (0,1,0), and (a,  b, c), with (a,  b, c) E z3and c + 0. 

Theorem 4.2 [Reeve-White-Howe-Scarf-Reznickl . A tetrahedron T is primitive if and 
only if T = To,,,, or T E T, ,,,, with 1 I b < c and gcd(b, c) = 1. 

We refer the reader to [lo] for a proof of Theorem 4.2, and to [ I l l  and [13] for 
proofs of variants of it. It is surprising that such an elegant and simple theorem is 
not better known. 

5. THE COUNTING FORMULA. Unimodular maps preserve volume; conse-
quently, the number of distinct (unimodular) equivalence classes of primitive 
tetrahedra is infinite. We are led to consider the following question. 
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For a given positive integer c, is there a counting formula for the number of 
distinct (unimodular) equivalence classes of primitive tetrahedra of volume c/6? 
The answer lies in determining the relationship between the integers x and b 
when T I ,,,,= T,,,,,. The relationship is described in the following variant of 
Theorem 5.6 in [lo]. 

Theorem 5.1. Let b ,  b - ' ,  c,  x  E Z with 1 5 x ,  b ,  b-' < c, gcd(b, c )  = gcd(x, c )  = 1, 
and bb-' = l(mod c) .  The primitive tetrahedra T ,  ,,,and T,, ,,, are unimodularly 
equivalent i f  and only i f x  E {b ,  c  - b,  b - ' ,  c  - b-'1. 

Proof ( -1 We can view a unimodular map from T I ,,, ,to T I ,.x,c as a map between 
the vertices of T,,,,, and TI ,,,,. There are 24 possible maps. An examination of 
each of these shows that x E {b ,  c  - b,  b - l ,  c  - b P 1 } .  

For example, suppose we look at the unimodular map 

This map has the form 

with the conditions that a E Z and x - b + ac = 0. Since Ix - bl < c, it follows 
that a = 0 and therefore x = b. 

E, ,,TI ,)(=( T I , ,-,, ,via the unimodular map 

/ 1 0 o \  l u l  0 

-1  -1  1 + I l ' ,  

0 0 l \ u 3  \ 0 

T I ,,, ,= T,, , - I , ,  via the unimodular map 

and TI ,,,,= TI ,,-,-I,,via the unimodular map 

Before proceeding to the statement of the counting formula, it is instructive to 
determine the number of equivalence classes of primitive tetrahedra of volume 
c /6  for some specific values of c. We do so for c = 13 and c = 14. We start with 
the case c = 13. Because of Theorem 4.2 we need consider only the 12 primitive 
tetrahedra ,,TI ,,,,,,T I ,  T,,,, ,,, . . . , T,,,,, ,, and determine which are unimodu-
larly equivalent. Theorem 5.1 ensures that TI ,,,1 3 ,  z ,,T I ,,,,,,,TI ,  

T l , 7 , 1 3  T l , 1 1 , 1 3 ,  T l , 3 , 1 3  T1 ,4 ,13  T l , 9 , 1 3  T l , 1 0 , 1 3 ,  and T l , 5 , 1 3  T l , 8 , 1 3 , s o  

,, E ,,TI ,  E 


there 
are 4 equivalence classes of primitive tetrahedra of volume 13/6. For c = 14, we 
need to consider only the 6 primitive tetrahedra T,,,,,,, TI,,,,,, T  ,,,,,,, T ,,,,,,, 
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T1, 11, 14, and T1, 13, 14 '  Since Tl, 1,14 T1, 13, 14 and T1, 3, 14 Tl, ,,I4 T1, 9, 14 
TI,,,,,,, there are 2 equivalent classes of primitive tetrahedra of volume 14/6. 

We now prove the counting formula by combining Theorem 5.1 with Burnside's 
lemma. 

Theorem 5.2 (Burnside's lemma). Let a finite group G act on a finite set X and have 
N orbits. Then 

where X, = {x: g(x) = x, x E X}, i.e., X, is the set offocedpoints of g. 

See [12, Theorem 2.71, p. 1251 for a proof, as well as an explanation of why it is 
referred to by some as not-Bumside's lemma. 

We are now ready to state and prove the counting formula. 

Theorem 5.3. Suppose n is an integer greater than 2, T(n) is the number of distinct 
equivalence classes of prz'mitive tetrahedra of volume n/6, f(x) E (Z/nZ)[x], and 
N(f(x) = 0 (mod n)) denotes the number of solutions of the congruence f(x) = 0 
(mod n) in Z/nZ. Then 

+ (n )  + N(x2 - 1 = 0 (mod n) )  + N(x2 + 1 = 0 (mod n ) )  
T ( n )  = 

4 

In particular, if n is a prime p ,  then 

P + 3 

= [ E l  + 1 
P + I  

if p = 1(mod 4) 
T ( p )  = j 

if p = 3 (mod 4).  
4 

Proof: Let U = {x: 1 Ix < n, gcd(x, n) = 1) be the set of units of Z/nZ and let 
G = {g,, g,, g,, g4} be the group of bijections of U, where g,(x) = x, g,(x) = 

n - x, g,(x) = x-l,  and g4(x) = n - x-l for any element x E U. The cardinality 
of U is +(n), the Euler phi function evaluated at n, and G E 2 / 2 2  @ 2/22.  

Theorem 5.2 says that T(n) equals the number of orbits of U under the action 
of G. Let U, = {x: g,(x) = x, x E U}, i = 1,2,3,4. Since g, is the identity it fixes 
all of U. When n > 2, g2 has no fixed points. The fixed points of g, are the 
solutions of the congruence x 2  = 1 (mod n) and the fixed points of g4 are the 
solutions of the congruence x2  = -1(mod n). Thus, 

lull = + ( n ) ,  IU21 = 0, IU,l = N(x2 - 1 = 0 (modn) ) ,  

IU41 = N(x2 + 1 = 0 (mod n) )  

We now apply Burnside's lemma to obtain the formula 

+ (n )  + N(x2  - 1 = 0 (mod n ) )  + N(x2  + 1 = 0 (mod n) )  
T ( n )  = . w 

4 

Theorem 4.2 shows that if T is a primitive tetrahedron of volume 1/6 then 
T E To,,, ,, and if T is a primitive tetrahedron of volume 1/3 then T E TI, ,,,; so in 
the exceptional cases when n = 1,2  we have T(n) = 1. The reader can observe 
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that $(n), N(x2 - 1 = 0 (mod n)), and N(x2 + 1 = 0 (mod n)) are multiplicative 
functions of n. We now cite a result from the theory of quadratic residues that 
gives a formula for N(x2 - 1 = 0 (mod n) )and N(x2 + 1= 0 (mod n)). 

Theorem 5.4. Let n = 2km, with n 2 2 and gcd(m, 2) = 1. If m > 1, let the prime 
divisors of m be p, ,  . . . ,pi ;  otherwise set t = 0. Then 

N ( x 2  - 1 = 0 (mod n ) )  = 

i fk  2 3, 

and 

N(x2  + 1 = 0 (mod n ) )  

2' i fk  I1andp, = 1(mod4) foranyi E { I , ..., t}

7 { O  zfk 2 2 wthereexistsani i { I t )  suchtha tp  = 3 (mod i )  

See [5, Chapter 2, Section 8; Chapter 3, Section 51 for a proof. 

6. HOWE'S THEOREM. We now describe Howe's theorem on primitive polyhe- 
dra. Theorem 2.1 shows that any primitive polyhedron in R~ has at most 8 vertices. 
Howe proved that any primitive polyhedron with eight vertices is, up to a 
unimodular map, the convex hull of a square and a parallelogram. 

Theorem 6.1 [Howe]. Let P be a primitivepolyhedron with eight vertices. Then there is 
a unimodular map that maps P to the polyhedron whose vertices are (0,0,0), (1,0,0), 
(0,1, O), (0,0, I), (0,1, I), (1, a, b), (1, c, d), and (1, a + c, b + d)  with a, b, c, d,  E Z, 
a, b, c, d 2 0 and ad  - bc = 1. Furthermore, any primitive polyhedron with fewer 
than eight vertices can be embedded in one with eight vertices. 

We refer the reader to the article by Scarf [I31 for a proof of this theorem. It 
should be noted that the four vertices (O,O, O), (0,1, O), (0,0,1), and (0,1,1) lie on 
the plane x = 0 and form a square of area 1. The other four vertices (1,0, O), 
(1, a ,  b), (1, c, d), and (1, a + c, b + d)  lie on the parallel plane x = 1 and form a 
parallelogram of area 1. 

The problem of characterizing primitive tetrahedra was independently studied 
in 1957 by Reeve [8] and in 1964 by White [IS]; Theorem 4.2 arises from combining 
their results. In 1977, Howe independently discovered Theorem 4.2 and its 
generalization, Theorem 6.1. He  did not publish his work and it was Scarf [13] who 
first publicized Howe's theorem. Over the years, other mathematicians have 
rediscovered Theorem 4.2. For example, Therese Hart, Karen Rogers; and I 
discovered it in 1991 and wrote up our results in the unpublished manuscript [4]. 
We then came across Reznick's [lo] article where we learnt of the work of Reeve, 
White, and others. The contents of [4] are included in Chapter 2 of K. Rogers' 
doctoral dissertation [ l l ] .  The last chapter of this dissertation contains some 
partial results on primitive simplices in z4. 

We leave the reader with the following question: Are there analogues of the 
counting formula for primitive polyhedra with 5, 6, 7, and 8 vertices? 

532 A COUNTING FORMULA FOR PRIMITIVE TETRAHEDRA IN z3  [June-July 



ACKNOWLEDGMENTS. I am grateful to K. Rogers for showing me her proof of Theorem 4.2 and 
some of the unimodular equivalences of To,,,,. The use of Burnside's lemma to prove the counting 
formula was suggested by a referee and is an'uhdoubted improvement on my initial proof. The referees 
and my friend Sergio Alvarez made extensive suggestions on improving the exposition. 

REFERENCES 

1. 	 D. DeTemple, Pick's formula: a retrospective, Mathematics Notesfrom Washingtoit State University, 
Vol. 32, Nos.3-4 (November, 1989). 

2. 	 R. Diaz and S. Robins, Pick's formula via the Weierstrass p-function, Amer. Math. Monthly 102 
(1995) 431-437. 

3. 	 B. Grunbaum and G. C. Shephard, Pick's theorem, Anzer. Math. Monthly 100 (1993) 150-161. 
4. 	 T. Hart, M. Khan, and K. Rogers, Primitive tetrahedra in z3(unpublished manuscript). 
5. 	 Hua Loo Keng, Introduction to N~imber Theory, translated from the Chinese by P. Shiu, Springer- 

Verlag, 1982. 
6. 	 I. G. MacDonald, The volume of a lattice polyhedron, Proc. Camb. Phil. Soc. 59 (1963) 719-726. 
7. 	 G. Pick, Geometrisches zur Zahlenlehre, Sitzungber. Lotos (Prague) 19 (1899) 311-319. 
8. 	 J. E. Reeve, On the volume of lattice polyhedra, Proc. London Math. Soc. (3) 7 (1957) 378-395. 
9. 	 J. E. Reeve, A further note on the volume of lattice polyhedra, J. London Math. Soc. 34 (1959) 

57-62. 
10. B. Reznick, Lattice point simplices, Discrete Mathematics 60 (1986) 219-242. 
11. K. M. Rogers, Primitive simplices in z3and z4 (Ph.D. dissertation), Columbia University, 1993. 
12. J. Rotman, A first course in abstract algebra, Prentice-Hall, 1996. 
13. H. E. Scarf, Integral polyhedra in three space, Math. Oper. Res. 10 (1985) 403-438. 
14. C. L. Siegel, Lectures on the Geometv of Numbers; notes by B. Friedman; rewritten by 

K. Chandrasekharan with the assistance of R. Suter, Springer-Verlag, 1989. 
15. G. K. White, Lattice tetrahedra, Canad. J. Math. 16 (1964) 389-396. 

MIZAN R. KHAN received his B.Sc. and M.Sc. in Mathematics from the London School of Economics 
under the tutelage of Haya Freedman. He received his Ph.D. from the University of Massachusetts, 
Arnherst, where he wrote a dissertation in computational number theory under the direction of 
David Hayes. Before coming to Eastern Connecticut State University, he held visiting positions at 
Mt. Holyoke College and Trinity College. 
Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, 
CT 06226 

A COUNTING FORMULA FOR PRIMITIVE TETRAHEDRA IN z3  


