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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

A Physically Motivated Further Note on 
the Mean Value Theorem for Integrals 

William J. Schwind, Jun Ji, and Daniel E. Koditschek 

The purpose of this Note is to extend the following result by Zhang concerning the 
mean value theorem for integrals [4], which in turn was an extension of Jacobson's 
result [I]. 

Theorem 1. Suppose the finction f is continuous on the interval [a ,  b ] ,  and is k times 
differentiable at a with f ( ' ) (a)= 0 ( i  = 1,2,. . . ,k - I), f ( k ) ( a )# 0. If tx is such that 

then 

t x  - a 1
lim -= I t 


x-a X - a ( k + l ) r  
( 2 )  


As a side note, Jacobson [I] states that his result may fall into the category of 
"interesting facts we once knew, but have now forgotten." This indeed seems to be 
the case, as the right-hand side of (2) is derived in [2, p. 781. 

We extend Theorem 1 to a considerably larger function class, which includes 
functions such as f ( t )  = and f ( t )  = 1/ that do not satisfy the 
hypotheses of Theorem 1. Additionally, we apply the new results to obtain 
approximations of integrals appearing in familiar engineering settings. In fact our 
consideration of this problem was motivated by the desire to approximate, in 
closed form, integrals arising from a class of central force problems and to do so 
independently of the particular mathematical form of the force law itself. 

Theorem 2. Suppose f is continuous on (a ,  b ]  and g is integrable on (a ,b )  with 
g ( t )  2 0 for all t E ( a ,  b).  Let x E ( a ,  bl. If both lim,,,(f(t) - K ) / ( t  - a)" and 
lim,, ,g(t>/(t - a l k i s t  and are nonzero for some constant K ,  some nonzero r ,  and 
some s > - 1 with r + s > - 1, then 

1, there exists a txE (a ,X I  such that 



2. for any such choice of t', 

Proof Define C, = lirn,, ,(f(t) -K)/(t -a) ' ,  C, = lim,,ag(t)/(t -a)" e,(t) = 

(f(t) - K)/(t - a)" - C,, and e2(t) = g(t)/(t - a)' - C,, SO that 

f ( t )  = K + C,(t - a)"  + ~ , ( t ) ( t- a)l' (5) 
and 

g ( t >  = ~ , ( t- a) '  + ~ , ( t ) ( t- a) ' ,  (6) 

where q(t)  - 0 as t - a for i = 1,2. 
First we must justify that the integral on the left hand side of (3) actually exists. 

Fix 6 E (a, b) such that q( t)  5 1 for a < t < 8. Now lf(t)g(t)l IK,(t - a)" 
K,(t - a)"+" for some constants K, and K,. The Dominated Coilvergence Theo- 
rem [3, p. 2911 ensures that j,fif(t)g(t) dt exists. Therefore, j,'f(t)g(t) dt exists. 

Proof of (1). Case 1 (r  > 0). It is easily seen from (5) that lirn,, a f ( t )  = K. Define 
F(a)  = K and F(t)  = f( t )  for t E (a, b]. Clearly, F(t)  is continuous on [a, bl. By 
applying the Integral Mean Value Theorem [3, p. 2811 to F(t), there exists a 5, in 
(a, x )  such that 

/ i ( t ) g ( t )  dt = / k ( t ) g ( t )  dt = F( t , )  ( t )  dt = f ( $ ) / b ( t )  dt 
a a 

Case 2 ( r  < 0). Without loss of generality take C, > 0 and l,"g(t) dt > 0. Then 
(5) requires that lim,, .f( t )  = + m. Thus there exists a positive 6 such that 

Therefore, a 5, satisfying (3), if it exists, is not contained in (a, a + 8). For 
a, E (a, a + a), f is continuous on [a,, x] and f( t )  > 7 on (a, a,]. Hence, 

min f ( t )  = min f ( t )  
t s ( a , x l  t t [ a , , x l  

Therefore, 

max f ( t )  2 f ( a , )  
t t  [a , ,  X I  

> 7 2 min f ( t )  
t s ( n , x l  

= min f ( t ) .  
f t[n , ,  X I  

By applying the Intermediate Value Theorem to f( t )  on [a,, XI, we obtain 
t' E [a,, xl  G (a, x ]  such that f (&)  = 7. 

Proof of (2). Substituting (5) and (6) into the left hand side of (3), one sees easily 
that 

+ c,[c,(t)(t - a)"' dt + Kce,(t)(t  - a) 'dt  

+ c,[e,(t)(t - a)"' dt + Ce , ( t ) r , ( t ) ( t  - a)"" dt. (7) 
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On the other hand, substituting ( 5 )  and (6 )  into the right hand side of (31, we find 

Equating (7) and (8) and simplifying gives 

where 

and 

Because / tX- a l I Ix - a 1 and 

we obtain 

s + l  
lim U = 1 and lim V = > 0 .  

x+n x j f l  r + s + l  (10) 

Now (4) follows from (9 )  and (10). 

Often, a good choice for K in Theorem 2 is to take K = lim,, ,f ( t )  if the limit 
exists or  K = 0 otherwise. 

A few immediate observations can be made when g ( t )  = 1. In this case (3 )  is 
identical to ( I ) ,  the statement of the Mean Value Theorem used by Jacobson and 
Zhang. 
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Observation 1. If g(t) = 1 in Theorem 2, then s = 0 and 

for some nonzero r > - 1. 

Notice that the form of the limiting value in (11) is identical to that in (2), but 
r E (- 1,m) \ (01, while k is only a natural number. 

Observation 2. Theorem 1 is a special case of Theorem 2. 

To see this, assume the hypothesis in Theorem 1; then 

f ( t )  - f ( a )  f 'k - l ) ( t )  f(k-1yt) - f (k- lya)  f (k)( a )  = ---

t - a  ( t  - a )  t + a  k!(t - a )  t + a  k!(t - a )  k! 

lim = lim = lim # 0, 

where the first equality is obtained by using L7Hospital's rule k - 1times while the 
the third one follows from the definition of f(k)(a). 

Observation 3. If, motivated by (41, we approximate tXby 

and replace txby txin (3), we obtain an approximation scheme to the integral 

A CENTRAL FORCE EXAMPLE. Consider the simple central force problem in 
which a mass on a spring is restricted to move in the vertical direction. Let the 
spring potential be given by U(y), where y is the distance from the ground to the 
mass. Then the dynamics are given by 

where g is the acceleration due to gravity and -DU(y) is the spring force; as a 
matter of notation, DU(y) = Ut(y). 

Since we assume no losses, the total energy is a constant of motion and we can 
formulate the integral for time as 

where y, is location of the mass when the vertical velocity is zero. 
Under reasonable assumptions on the spring potential, which will be made clear 

in the following, we can approximate (14) using Observation 3. 
Other problems, having integrals that resemble (141, could also be considered. 

Examples are the integrals for swing time and swing angle of a rotating mass on a 
spring or the integral for swing time of a simple pendulum. It is well known that 
the solution of this latter example can be formulated as an elliptic integral and 
thus several well-known approximation techniques can be applied. The results 
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presented in this Note could be used as well, but additionally, and more impor- 
tantly, they may also be applied if there are other forces, such as a torsional spring, 
acting on the pendulum. 

We focus on applying the results of Theorem 2 to our central force problem. 
Suppose we desire to approximate the length of time it takes for the mass to move 
from the point of maximal compression, y,, to some other location, y. The result is 
given by (14) with yi = y,. Furthermore, suppose we wish to solve this problem 
without assuming a particular functional form for the spring potential, U ( y ) . In 
such a case, it is impossible to integrate (14) in closed form. However, (12)provides 
an approximation to the integral of interest. 

To apply Theorem 2, we need to factor the integrand of (14) into the product of 
two functions, f and g. This factorization is by no means unique and each choice 
results in a slightly different approximation to the integral. We illustrate two 
possible choices and discuss the advantages and disadvantages of each. 

Let us first consider 

In this case s,  = 0. Choosing K = 0 and under reasonable assumptions on U ( y ) ,  
that is, 

lim 
' ( Y )  - ' ( ~ b )  

= U 1 (  y,) exists and is not equal to -mg, ( 1 5 )  
Y + Y b  Y  -yb 

we find r,  = - 1 /2 .  Note that the exception U 1 ( y b )= -mg, implies y, = 0. Since 
by definition j ,  = 0, this corresponds to an equilibrium of the system. From (12), 
we have an approximation to the integral (14) 

where [i = y,  + ( 1 / 4 ) ( y  - y,). 
Now consider 

Here, we find s,  = - 1 /2 .  If we assume (15),we can choose K = limy, y h  f 2 ( y ) . In 
order to solve for r , ,  we need to apply L7Hospital's theorem. This, however, does 
not provide enough information to determine r,-we need to know more about 
the structure of U ( y ) . If, for example, we assume 

" ( Y ) ( Y  - ~ b )- ( '(Y) - ' ( ~ b ) )
lim = U U ( y b )# 0 exists, ( 1 7 )  

Y - Y b  ( Y  -yb12 

we find r ,  = 1. If, however, U U ( y b )= 0, we must apply L'Hospital again and we 
find that if 

D ' " ( ~ ) ( ~- y b l 2  - - ~ b )- - ' ( ~ b ) ) )( u ' ( ~ ) ( ~  ( '(Y)
lim 

Y - Y b  ( Y  -yb13 

= U U ' ( y b )# 0 exists, 

then r ,  = 2. 

19991 NOTES 



Let us assume (17) holds; this implies r ,  = 1. In this case, using (121, we have 
another approximation to the integral '(l4), 

where [; = y, + (1/3)(y - y,). 
In this approximation strategy, each approach has its own advantages and 

disadvantages. The second approach has the advantage of extracting the "domi- 
nant" behavior of g and integrating that exactly, but has the drawback of requiring 
more explicit knowledge of the spring potential law in order to calculate r .  The 
first approach, while not offering the exactness of the second, allows greater 
flexibility because its approximation is based only upon the "uninformed" f actor- 
ization ( g ( t )  = I), which allows r to be determined with only minimal knowledge 
of the spring potential law. Therefore, one's choice of approximation depends on 
the application of interest. 

In this Note we provide two different approximations to (14). From Observation 
3, we know that these approximations are good for y close to y,; however, our 
proof shows that these approximations may be suitable over larger intervals. 
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