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Inverse Conjugacies and Reversing 

Symmetry Groups 


Geoffrey R. Goodson 

INTRODUCTION. We present some elementary group theory that arises in the 
theory of time-reversing dynamical systems. Let G be a (usually non-abelian) 
group and let a E G be a fixed element. The set 

the centralizer of a ,  is a subgroup of G that contains (a ) ,  the cyclic subgroup 
generated by a .  Our aim is to study the skew centralizer 

B(a )  = { x  E G :xa = a- 'x}. 

This paper arose from a course I gave on algebraic structures, where some of 
the results of Sections 1 and 2 and some examples from Section 4 were presented 
as exercises and then discussed in the classroom. In addition, the students were 
asked to calculate B(a) and C(a) for certain specific examples, sometimes with the 
aid of a software package. 

Generally B(a) is not a subgroup of G,  and it may be empty. However, 
E(a)  = B(a) U C(a) is a group, which is called the reversing symmetry group of a .  
In dynamical systems theory, the group element a represents the time evolution 
operator of a dynamical system. We present some results familiar to people 
working in time reversing dynamical systems, but our presentation is given in an 
abstract setting, entirely from an elementary group theoretic point of view, in the 
hope that it will be of interest to teachers of a first course in group theory. 

Section 1gives some of the elementary properties of B(a). We see that B(a) is 
a group if and only if a is an involution, i.e., a2  = e, the identity of G.  In Section 2, 
we prove (following Lamb [8]) that E(a) is a group having C(a) as a normal 
subgroup. In dynamical systems, the case where a has infinite order is of most 
interest, but we show that there are interesting finite groups, such as the dihedral 
and dicyclic groups, that arise in a natural way from the study of E(a). In Section 3 
we study the inner automorphisms of E(a)  and apply them when G is a topological 
group. We give particular emphasis to the situation when Is2 : s E B(a)} is a 
singleton set. Inverse conjugacies involving the permutation groups and some 
infinite groups originating in dynamical systems theory are our focus in Section 4. 

In Section 5 we mention briefly the dynamical origins of the ideas discussed 
here, restricting our attention to the ergodic theory of measure-preserving trans- 
formations. 

1. ELEMENTARY PROPERTIES OF H a ) .  Elements a, b E G are said to lie in 
the same conjugacy class (that is, a and b are conjugate) if there exists some x E G 
satisfying a = x-'bx. Thus a E G is conjugate to its inverse if B(a) # 0. 

The set B(a) is a group only in special circumstances. If it is a group, then B(a) 
contains the identity of G, which we denote by e, so ea = a-'e, a = a p l  or a2  = e. 
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This in turn implies that B(a) = { x  E G :xa = a-'x} = C(a).On the other hand, 
if B(a) = C(a),then B(a) is a group. Let us also mention that if B(a) n C(a) is 
non-empty, then we must have a2 = e. We have proved: 

Proposition 1. For a  group G and a  given a  E G with B(a) # 0,the following are 
equivalent: 

( i )  B(a) is a  subgroup of G. 
( i i )  a  is an involution, i.e., a2 = e. 
(iii) B(a) = C(a). 

(iu) B(a)  n C(a)# 0. 


If G is an abelian group, then C(a) = G ,  so from Proposition 1, either 
B(a) = C(a)(when a2 = e), or B(a) = 0.If any of the conditions of Proposition 1 
hold, we say that we have the trivial case. 

In general, B(a) may have elements of all even orders, and also of infinite 
order. However, if there exists an x E B(a)with x" = e for some odd n E Z,  then 

so we again have the trivial case. 
On the other hand, suppose x E B(a) is of order 2n and 2n' is the highest 

power of 2 dividing 2n, i.e., 2n = 2"k for some odd k E Z. Then y = xk  E B(a)
and 2"' = k 2"' -

- x 2n = e, so B(a) also contains elements of order 2" (see [9, p. 
141). 

Notice that a E G is conjugate to a-l if and only if there are u , u E G 
such that 

a = uu-l and u2 = u2 

To prove this, take any w such that aw = wapl .Then ( a ~ ) ~awaw = waplaw == 

w2. Set u = aw E B(a) and u = w. Then a = uu-l and u2 = (awl2= w2 = u2. 
Conversely, suppose a = uu -l and u2 = u2. Then au = uu-'u = u and ua -' = 
u ( u u - l ) - l  = u 2 u - 1  = U 2 U - 1  = u , i.e., au = ua-'. 

The case where there exists an involution in B(a) is important in the dynamical 
systems literature. We now see that a is conjugate to a-l via an involution if 
and only if there are u, u  E G such that a = uu-' and u2 = u2 = e (see [9, p. 131 
and [4]). 

2. THE REVERSING SYMMETRY GROUP E(a) = B(a) U C(a). We claim that 
the set E(a)  = B(a) U C(a), is a subgroup of G .  This is clear if B(a) is empty, 
so assume it is non-empty. Taking inverses of both sides of xa = a-'x gives 
a - l  x - 1  -- xp la ,so 

x E B ( a )  o x-l E B ( a )  and xa = a- lx  a ax =xu- ' .  

Since B(a) and C(a)are closed under the taking of inverses, so is E(a). 
Let x,  y E E(a).If x, y  E C(a),then q = xay = xya. Therefore q E C(a)and 

so xy E E(a). 
If x,  y  E B(a), then uq = xaply  = xya. Therefore xy E C(a)  and again 

xy E E(a). 
The third possibility is x E B(a), y  E C(a).In this case my = xa-ly = q a - l ,  so 

q E B(a), and q E E(a). 
The proof that E(a)  is a group is completed on noting that e E C(a)cE(a). 

20 INVERSE CONJUGACIES A N D  REVERSING SYMMETRY GROUPS [January 



The preceding argument shows that C(a) is a subgroup of E(a). Suppose a 2  # e 
and B(a) # 0 ,  and let x, y E B(a). Then xp'y E C(a) and y E x . C(a). It follows 
that B(a) c x . C(a) and in a similar way that x .C(a) cB(a). In particular, the 
cosets of C(a) in E(a)  are C(a) and x .C(a) = B(a). 

Clearly x . C(a) .x- l  = C(a) for all x E E(a), so C(a) is a normal subgroup of 
E(a), and we see that E(a)/C(a) E Z,. If ( a )  = {a" :n E Z} is the cyclic sub- 
group generated by a, then ( a )  is a normal subgroup of both C(a) and E(a). 

If G is a finite group having even order, then it is an easy exercise to show that 
there exists some a E G, a # e, with a 2  = e; the conditions of Proposition 1 are 
satisfied for a ,  so B(a) = C(a) # 0 .  Consequently, finite groups of even order 
always contain nontrivial elements that are conjugate to their inverse. 

On the other hand, finite groups of odd order never contain a nontrivial 
element that is conjugate to its inverse. Suppose the order of G is odd and there is 
an a E G, a # e, that is conjugate to its inverse. Lagrange's theorem implies that a 
cannot be of even order, so a 2  # e. By assumption, B(a) # 0, so Proposition 1 
implies that E(a)  = B(a) U C(a) is a disjoint union. Since the cosets of C(a) in 
E(a)  are C(a) and B(a), E(a)  is a subgroup of G of even order. Lagrange's 
Theorem again tells us that this is impossible. 

The fact that E(a)  is a group with E(a)/C(a) s Z, appears in [8] and 
[9, p. 9-12]. However, the following may not be well known: 

Proposition 2. Let a E G with B(a) # 0. 

(i) If x E B(a) and x 2  E (a ) ,  then x4  = e. In particular, if the order of ( a )  is 
' 

infinite or odd, then x2  = e. 
(ii) 	If C(a) = (a ) ,  then {x2 :x E B(a)} is a singleton subset of C(a). 

(iii) 	If {x2: x E B(a)} is a singleton set, then the order of x divides 4 for all 
x E B(a). 

(iv) The center of E(a)  is a subgroup of C(a). 

Proofl (i) If x E B(a) and x2  E (a) ,  then x2  = an  for some n E Z. Since 

we see that the order of x divides 4 and hence the order of x2  divides 2. If 
x2  E (a ) ,  a cyclic group having infinite (or odd) order, then ( a )  cannot have any 
elements of order 2. Therefore x2  = e. 
(ii) In a similar way, if x,, x, E B(a), then xlx, E C(a) = (a ) ,  so x,x, = a" for 
some n E Z. Also x lan  = a-"xl, so x,x,x, = (x,x,)-~x,,  or x: = x , ~= x;, SO 

{x2:x E B(a)} is a singleton set. 
(iii) If x E B(a), then x3  E B(a) so x 2  = (x3)' = x6, and this implies x 4  = e. 
(iv) If x is in the center of E(a), then xg = gx for all g E E(a). In particular, 
xu = ax, so x E C(a). • 

Since ( a )  is a normal subgroup of C(a), the quotient group C(a)/(a) is well 
defined. This group is sometimes called the essential centralizer of a.  Proposition 
2(ii) can be generalized to: 

If a E G has infinite order and C(a)/(a) has order m for some m E Z+,  then 
every x E B(a) has order 2k for some k that divides m. 
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3. THE INNER AUTOMORPHISMS OF E(a).  The inner automorphisms of E(a)  
have the form +,(x) = sxs-' for some s E E(a). Since C(a)  and ( a )  are normal 
subgroups of E(a),  they are preserved by +, for all s E E(a). Furthermore, if 
s E B(a)  and x E ( a ) ,  then +s(x)= x- l .  This is because x = a" for some n E Z,  
and so +,(x)  = = a-nss-' = a-1" - X  . 

When is it true that +s(x)= x-' for all x E C(a)? Let us say that s E B(a)  
conjugates C(a)  to C(a)-' if sx = x-'s for all x E C(a),  or, equivalently, if 
+,(x) = x-' for all x E C(a). 

We can now show that every s E B(a)  conjugates C(a)to C(a)-'  if and only if 
{s2: s E B(a)} is a singleton set. 

To see this we use the fact that B(a)  = sC(a) for each s E B(a).  If s E B(a)  
conjugates C(a)  to C(a)F1 then sx = x p l s  for all x E C(a). This implies that 
(sx)' = s2,  and the result follows. 

Conversely, suppose that {s2: s E B(a)} is a singleton set. Then ( s x ) ~= s2 for 
any s E B(a)  and x E C(a). This immediately gives sx = x-'s, so s conjugates 
C(a) to C(a)V1.  

We leave it to the reader to show that if { s 2: s E B(a)}is a singleton set, then 
C(a)is abelian. 

Our aim now is to apply the preceding results to the case where G is a 
metrizable topological group. Note that if ( a )  is dense in C(a),then C(a)must be 
abelian, and either C(a)  = ( a )  or C(a)  is uncountable. An immediate conse-
quence of the next theorem is that if ( a )  is dense in C(a)  and B(a)  # 0,then 
every s E B(a)  conjugates C(a)to C(a)- l .  

Theorem 1. If ( a )  is dense in C(a)  and B(a)  # 0, then Is2 : s E B(a)} is a 
singleton set. 

Proof We are given that { a n:n E Z )  = C(a).Let x,, x ,  E B(a), so x,x,  E C(a). 
We use an argument similar to that in Proposition 2(ii). 

There is a subsequence {n,}of integers for which x,x, = lim,,,anl. Further-
more, ax, = x,a-' implies that a " ~ x ,= x,ap"l for all i. 

Letting i -+ w and using the continuity of multiplication and inversion in G ,  we 
obtain 

The fact that B(a)  is closed under the taking of inverses now gives x: = x i ,  so 
{ x 2: x E B(a)}is a singleton set. 

If x E B(a), then we cannot have a E {x2":n E Z} as this would imply a2 = e, 
the trivial case. Whenever G is a topological group, the set {x2":n E Z} cC(a)is 
never dense in C(a)for any x E B(a). 

This section is based on [3] and [4]; see also [lo],where inner automorphisms on 
Er(a) ,the reversing k-symmetry group are discussed. 

4. EXAMPLES. 
(i) Dihedral and Dicyclic Groups. The dihedralgroup D, of order 2n arising from 
the symmetries of a regular plane n-gon is 

( a ,x :a" = e ,  x2 = e ,  x-'ax = a - l ) .  
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The dicyclic groups of order 4m are 

( a ,  x :  a2m = e, x 2  = a m ,  x-lax = a-l  >. 
See [I, p. 6-81 or [12, p. 65-66] for a discussion of these groups. 

If a has finite order n and C(a) = (a ) ,  Proposition 2(ii) says that x 4  = e if 
x E B(a). Essentially two different cases arise: 

(a) If x 2  = e, then E(a)  E D,. 
(b) If x 2  # e, then x 2  = anI2 .  In particular, n is even and E(a)  is a dicyclic 

group of order 2n. 

As a concrete example, consider the smallest of the dicyclic groups, the 
quarternion group Q, = {f  1, f i, f j, $ k} with multiplication given by i2 = j2= 

k2  = - 1, i j  = k, jk = i, ki = j, and ji = -k, kj = -i, ik = -j and the usual 
rules for multiplying by f 1. Then C(i) = {f 1, f i} and B(i) = {f  j, f k}. Since 
C(i) = ( i )  is a cyclic group, {x2 : x E B(i)} = { - 1) is a singleton set. 

(ii) Permutation Groups. Every element of the permutation group Sn on n 
symbols is conjugate to its inverse. This is because any permutation in S, can be 
resolved into a product of disjoint cycles in a unique manner except for the order 
in which the cycles appear. Two permutations are in the same conjugacy class if 
they have the same cycle pattern. For example, in S, the permutations 

x = (3,5,6)(2,4)(7,1)  and Y = (2,4,1)(3,5)(6,7)  
have the same cycle pattern, so they lie in the same conjugacy class. It is clear that 
every permutation and its inverse have the same cycle pattern. 

Not every element of the alternating group A,, need be conjugate to its inverse. 
For example in A,, the cycles (1,2,3) and (1,2,3)-' are not conjugate. This is 
because B((1,2,3)) (in S,) consists solely of odd permutations. However, every 
element of A, is conjugate to its inverse ([12, p. 601). Examples of infinite groups 
with this property are given in [7]. 

Note that the element a = (1,2)(3,4) of S, has order 2, so C ( a )  = B(a ) .  Also, 
7 = (2,3,4) E C ( a )  is of order 3 and T a  = a-'7. 

(iii) An Infinite Group. Let G = (a ,  k )  be the finitely generated group subject to 
the relations kak-l = a- l  and k 4  = e. Then C(a) = (a ,  k2) ,  and if x E B(a) then 
for some n E Z either x = kan or x = kplan .  Now 

(kan12 = = k a  n a'L- k 2 # e ,k 2 ( k ~ l ~ n k ) ~ n2 

and similarly for kp lan .  It follows that there are no involutions in B(a). However, 
Ikan = 4 and {x2 : x E B(a)} is a singleton set. It follows that B(a) conjugates C(a) 
to C(a)-l. 

(iv) Group Rotations. Let G be a compact monothetic topological group: there 
exists some a E G for which the set {an : n E Z} is dense in G. In this case G is 
abelian, and we assume that a 2  # e. A nice example is the unit circle S1 in the 
complex plane, with a E S1 chosen so that it is not a root of unity. 

Let 27 be the group of all homeomorphisms h :  G + G, a subgroup of the 
permutation group of G. If we define +, : G -+ G by +,(g) = a . g  for some fixed 
a E G, then 4, is a rotation of G and 4, E 27. 

We claim that C(+,) = {+, : b E GI, for if @ E C(+,), then 

@ 0 +, = 4,"  @' @(ag) = a @ ( g ) ,  for all g E G .  

If @(e)= b, then @(a) = a .  b and @(an) = an  . b for all n E Z. Continuity of @ 
now implies that @(g) = b . g  for all g E G, or @ = +,. 
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Note that +;'(g) = a- lg ,  so if we define S : G - G by S(g) = g-l,  then 

s O +,(g) = S(ag) = (ag)  
-1  = a - l  

g 
-1  -

- + i l ( g - l )  = $2oS(g17 

or s E ~ ( 4 , ) .  It follows that every member of B(4,) is of the form R = S O 4, for 
some b E G. Now 

R ~ = S O + , O S O + ~ = S O + ~ O + ~ ~ O S = S ~ = I ~ ,  

where Id is the identity in 27. We conclude that every member of B(+,) is an 
involution. 

(v) Automorphism Groups. Let X be a group and let 27 = Aut ( X )  be the 
automorphism group of X. If 27 is abelian (for example if X is cyclic, or is 
the p-adic integers) then B(+) # 0 if and only if + E 27 is an involution. In 
the general case there is a simple way to construct automorphisms conjugate 
to their inverses: Let + E Aut(X).  Then + x +-I E Aut (X  X X). Define 
@, E Aut ( X  x X )  by @,,(x, y) = (y, x). Then @, E B(+ X + - I )  and = Id. 

Other less-trivial members of B(+ x + - I )  can be described. For example, 
define @ E Aut(X x X )  by $(x, y) = ( ~ , + ( x ) ) .  We can verify directly that (4 X 
4-l)o @ = @ . (+-I X +), and @ has infinite order if + has infinite order. 

Related examples can be given using countable direct products. Let X be a 
group and write G = Il:= -,X,, where X, = X for all i E Z.Define : G + G by 
[@(g)],,= g,,,, where the subscript n denotes the nth coordinate. Then @ is just 
the familiar shift automorphism. 

Define automorphisms P and Q of G by [P(g)], = g-, and [Q(g)], = g,-,,. 
Then = PQ is a product of two involutions. It follows from the last paragraph of 
Section 1 that @ is conjugate to its inverse by an involution. 

In a similar way we can construct other automorphisms of the product space 
that are conjugate to their inverses. Let U :  G - G be defined by 

where the * denotes the 0th coordinate and + is an automorphism of X. 
Note that U2 = Q2, where Q is the shift map, so if we let V = and 

A = UV-l, that is, 

then the same reasoning as in the preceding example implies that A is conjugate 
to A-'  and U E B(A). 

5. DYNAMICAL ORIGINS. Let T:X -+ X be an invertible measure-preserving 
transformation on a Bore1 probability space ( X , z  p). This means that T-'B E 9 
and ~ ( T - ' B )  = ,dB) for all B E X If T, and T2 are two such transformations on 
corresponding probability spaces, T, is conjugate to T2 if there is an invertible 
measure-preserving transformation S : X I  -+ X2 such that ST, = T2S (when we 
write f = g in this section, we mean f(x) = g(x) for all x E X except possibly for 
a set of p-measure zero). With every measure-preserving transformation T we 
associate a unitary operator 

A measure-preserving transformation T is said to have discrete spectrum if 
UT has discrete spectrum, i.e., there is a complete orthonormal sequence 
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{f,} c L2(x ,  p )  and a sequence {A,) of complex numbers (of absolute value one) 
such that f,(Tx) = A, f,(x) for all n = 1,2, . . . . More generally, T is said to have 
simple spectrum if there exists some h E L2(x ,  p )  such that the closed linear span 
of {U,"h : n E B} is all of L2(X, p). 

A transformation T is ergodic if for any measurable function f,  the condition 
f(Tx) = f(x) implies f = constant. This is equivalent to the condition: if A E E 
then T-'A = A  implies ,x(A) = 0 or 1. 

Suppose G is a compact topological group with Haar measure A, and whose 
measurable sets are the Bore1 subsets of G. If a E G, the rotation 4, : G G-+ 

given by +,(g) = a . g  is a Haar measure-preserving transformation. The transfor- 
mation 4, is ergodic if and only if ( a )  is dense in G. A celebrated result of 
Halmos and von Neumann [6, Theorem 41 says that an ergodic transformation T 
with discrete spectrum is conjugate to an ergodic rotation 4, : G -+ G for some 
compact topological group G and some a E G. 

The characters of G have the property 

i.e., they are eigenfunctions of 4,. Conversely, every eigenfunction of 4, is a 
character of G. It is a consequence of Pontsyagin duality theory that the characters 
constitute a complete orthonormal basis for L2(G, A). 

Let T be an ergodic transformation with discrete spectrum. The discrete 
spectrum theorem of Halmos and von Neumann implies that T is conjugate to its 
inverse. Also, if S is measure-preserving and ST = T - ~ S ,  then s2= I. Further-
more, the centralizer of T (with a suitable topology) is a compact abelian group 
that is isomorphic to G in a natural way. Conversely, any ergodic T for which 
C(T) is compact must have discrete spectrum. 

Halmos and von Neumann asked whether every ergodic transformation is 
conjugate to its inverse via an involution. In 1951, Anzai showed that there is an 
ergodic transformation that is not conjugate to its inverse. As a consequence, this 
type of inverse-conjugacy problem lay dormant for some years. Recently it was 
shown that if a transformation T has simple spectrum and is conjugate to its 
inverse, then every conjugation is an involution. This generalizes aspects of the 
Halmos-von Neumann theorem [3, Theorem 11. In addition, in [3], [4], [S], and 
[9] one finds many examples of transformations whose centralizers and skew 
centralizers have group theoretic properties similar to those discussed in this 
paper. Ergodic transformations with a wide variety of centralizers are now known. 
For an ergodic T, C(T) can be a compact abelian group, a countable cyclic group, 
an uncountable monothetic group (hence abelian, but not locally compact), as well 
as many other abelian and non-abelian groups. A nice treatment of certain 
examples arising in this theory is given in [2]. 

6. CONCLUDING REMARKS. In the dynamical systems literature there has been 
some confusion about the role of involutory time-reversal systems. Some authors 
seem to believe that the set of reversing symmetries B(a) (if non empty) must 
always contain an involution. Our examples show that this is not generally the case, 
although it is true in certain special contexts. For example, if G = GL(n, R) then 
for all a E G such that B(a) # 0,B(a) contains an involution; see [13, Chapter 
21. Related results are given in [S], where properties of real orthogonal matrices 
are studied in this context. A survey of time-reversal symmetry in dynamical 
systems is given in [Ill .  
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