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To prove this, let Cizoai  2' be the binary expansion of j, and let A = 12.j: a j  = 1). For 
each A g [n] with ~ im-sum 0, let f (A) = AAAj. Note that f (A) has Nim-sum j. Since 
(AAAj)AAj = A, this map is a bijection into the set of subsets of [n] with Nim-sum j. 

Solved also by D. Beckwith, M. Benedicty, D. Berstein, J .  C .  Binz(Switzerland), M. Bowron, D. Callan, R. J. Chapman (U. K.), 
D. Donini (Italy), G. Gordon, R. Holzsager, K. S. Kedlaya, N. Komada, J. H. Lindsey 11, J. Lorch, 0.P. Lossers (The Netherlands), 
D. K. Nester, A. Nijenhuis, K. O'Bryant, M.-K. Siu (Hong Kong), J.  H. Steelman, W. Stromquist, I. Vardi (Canada), H.-T. Wee 
(Singapore), M. Wolterman, Anchorage Math Solutions Group, GCHQ Problems Group (U. K.), NCCU Problems Group, NSA 
Problems Group, and the proposer. 

Generalized Line Bingo 

10565 [1997,68]. Proposed by D. M. Bloom, Brooklyn College, Brooklyn, N x  and Kenneth 
Suman, Winona State University, Winona, MN. A rectangle is composed of mn squares 
arranged in m rows and n columns. In a certain game, the squares are selected one by one at 
random (without replacement). What is the expected number of selections until j columns 
of the rectangle are composed entirely of selected squares? (When j = 1, m = 5, and 
n = 15, this is the expected length of a type of bingo game known as a line game.) 

Composite solution by the GCHQ Problems Group, Cheltenham, U. K. and the editors. For 
fixed m and n, the required expectation E j  equals mn n:~;mi/(mi + I). 

For each instance of the game, we can continue selecting squares at random until all 
squares are selected. Thus it suffices to compute, over all permutations of the mn squares, 
the expected length of the initial segment that completes j columns. We compute for each 
square x the probability that it belongs to that initial segment. This is independent of x ,  so 
the expectation is mn times this probability. 

Let Ai be the event that x belongs to the initial segment in which i columns are completed; 
note that Pr(A,) = 1. The probability Pr(Aj) is the product over i 2 j ofPr(AiIAi+1). 

We partition Ai+1 into subevents that fix the trailing segment after the position where the 
(i + 1)st column is completed. In such a subevent S, the identities of the first i + 1 finished 
columns are fixed, but not which of these is last. 

For permutations in S, let B be the set of squares consisting of the first i finished columns 
and the last square that completes the (i + 1)st completed column. When x E B, it is 
equally likely to occupy any of the mi + 1 positions occupied by B, so the fraction of such 
permutations that belong to Ai is mi/(mi + 1). 

When x 4 B, we can group the permutations by each fixed permutation of B. Now x is 
equally likely to fall into each of the mi + 1 segments between members of B (or before 
the first). Again the fraction of these permutations that belong to Ai is mi/(mi + 1). 

Editorial comment. The rows are unimportant. Victor Hernandez used linearity of expecta- 
tion and the inclusion-exclusion principle to obtain a formula in the more general situation 
where the columns are sets of arbitrary size. 

Solved also by R. J. Chapman (U.K.), D. A. Darling, V. Hernandez (Spain), R. Holzsager, J. H. Lindsey 11, P. W. Lindstrom, 
N. C. Singer, J. C. Smith, J. H. Steelman, Anchorage Math Solutions Group, and the proposer. 

Ordered Trees and Stirling Numbers 

10570 [1997,69]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NI: An 
ordered tree is a rooted tree in which the children of each node form a sequence rather than 
a set. The height of an ordered tree is the number of edges on a path of maximum length 
starting at the root. Let a (n, k) denote the number of ordered trees with n edges and height 
k, and let S(n, k) be the Stirling number of the second kind (the number of partitions of 
(1, 2, . . . , n )  into k nonempty parts). Note that a(n,  1) = S(n, I), since both numbers are 
1. Show that (a) a(n ,  2) = S(n, 2), (b) a(n,  3) + a(n,  4) = S(n, 3), and (c)Qeneralize 
these observations. 
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Solution I  by Robin J. Chapman, University ofExetel; Exete?; UK. Let b(n,  k )  be the number 
of ordered trees with n edges and height at most k .  We include the tree with a root and 
no edges, so b(0, k )  = 1 for k 3 0. It suffices to show that b(n, 2) = 1 + S(n,  2) and 
b(n,  4 )  = 1 + S(n,  2) + S(n ,  3) for n > 0. To achieve this, we compute the generating 
function gk(x) = b(n,  k )xn  for 0 ICnzO k 5 4. 

We have go(x) = Fork > 0,an ordered tree of height at most k consists of the root v ,  
r edges incident to it, and a sequence of r ordered trees of height at most k - 1 rooted at the 
children of v. The generating function for ordered trees of height at most k in which the root 
has degree r is thus xr (gk-1 (x)) ' .  Summing over r , we obtain gk(x) = 1 / ( 1  -xgk-1 ( x ) ) .  
Explicitly, this yields 

Expanding by partial fractions yields 

g2(x) = 1 + -
1 -

X 

2x 
and g4(x)= 1 + -

2(1 

X 

- x )  + 2(1 -

X 

3 x ) .  

Thus b(n,  2) = 2n-1 and b(n, 4 )  = (3n-1+ 1)/2for n 2 1. 
The number of partitions of [n]into at most two parts is half the number of subsets of 

[n] ,so 1 + S(n,  2) = 2n-1,as desired. Now consider partitions of [n]into at most three 
parts. Each element other than n enters the part with n or one of the other two. Thus 3n-1 
counts each partition with at least two parts twice, as we can interchange the second and 
third part without changing the partition. The partition with one part appears only once, so 
the total number of classes is (3n-1+ 1)/2,as desired. 

Finding further relations among these numbers seem unlikely. If f k ( x )  = fk-1(x) -
xfk-2(x) fork  > 2, with fO(x)= f l ( x )  = 1 ,  then gk(x)= for all k. Onef k ( ~ ) / f k + l ( ~ )  
can show that 

It follows that 

for constants rk,,j. On the other hand, it is well known that S(n ,  k )  = z = l  tk,,j jn for 

constants tk,,. When k $ (0 ,  1 ,2 ,4} ,  the value 4cos2 j n / ( k  + 2) is irrational for some j ,  
so there is little hope of establishing a simple relationship betweeen b(n ,  k )  and the Stirling 
numbers in these cases. 

Solution I1 to parts (a) and (b) by Daniele Donini, Bertinoro, Italy. We define a bijection 
from the set of ordered trees with n edges and height at most 4 to the set of partitions of [n] 
with at most 3 blocks, in which for k 5 3 the trees with height k become partitions with k 
blocks, and the trees with height 4 become partitions with 3 blocks. 

Given a tree T, label the non-root vertices with the integers 1 through n in order via a 
depth-first left-first search. To form the corresponding partition, let the ith block consists of 
the label on vertices at distance i for the root, except as follows. In each subtree rooted at a 
vertex at distance 3 from the root, put the largest value in block 3 and put the other values 
in block 1. This reduces to partitioning by levels for trees with height 3. 
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For the inverse map, index the blocks in partition n in increasing order of their least 
elements: Al ,  possibly Az, possibly Aj.  Build the corresponding tree traversal (starting 
with 1 as the leftmost vertex at level 1) as follows. Suppose that the label just processed 
was label k, belonging to Ai . Let Aj  be the block containing label k + 1. 
Case 1: j 5 i .  Make k + 1 a new rightmost leaf at level j. 
Case 2: j = i + 1. Make k + 1 the first child of the vertex with label k. 
Case 3: j = 3 and i = 1. Because min A2 < min Ag, there exists a label less than k in A2. 
Let 1 be the largest such label less than k. Let rn be the least label such that all labels from 
rn to k lie in A l ;  note that m > I .  Remove m ,  . . . , k from level 1. Make rn the rightmost 
child of 1 (at level 3). Make rn + 1, . . . ,k + 1 children of rn (at level 4). 

Applying the original map to the resulting tree puts each label back into its block in n. 
As an example, the tree corresponding to Al = {1 ,6 ,7 ,  10, 121, A2 = {2 ,4 ,9 ,  111, and 
A3 = {3,5,  8, 13) is shown. 

Solved also by D. Callan, R. Holzsager, the Anchorage Math Solutions Group, and the proposer. 

Lattice Points Inside a Triangle 

10600 [1997,566]. Proposed by Franz Rothe, University of North Carolina, Charlotte, NC. 
(a) Suppose a triangle has its vertices at integer lattice points in the plane and contains 
exactly 3 integer lattice points in its interior. Show that the center of mass of the triangle is 
not an integer lattice point. 
(b)* Find all values i such that, if a triangle has its vertices at integer lattice points in the 
plane and contains exactly i integer lattice points in its interior, then the center of mass of 
the triangle cannot be an integer lattice point. 

Solution ofpart (a) by Robin J. Chapman, University ofExetel; Exetel; U. K. Let the vertices 
of the triangle be A, B ,  and C ,  with position vectors a,  b, and c, respectively. Suppose that 
the centroid of the triangle has integer coordinates. This centroid is (1/3)(a + b + c). Let 
D denote twice the area of the triangle. Then 

where x denotes the vector product. By assumption (1/3)(a+b+c) has integer coordinates; 
therefore, so has (1/3)(a + b + c) - a = (1/3)((b - a)  + (c - a)). Hence (c - a) = 

-(b - a) + 3d, where d has integer coordinates, and so D = I(b - a) x (c - a)l = 
3 I(b -a)  x dl is a multiple of 3. Let r ,  s, and t be the largest integers such that (1 / r )(b -c), 
( l /s)(c - a), and ( l / t ) ( a  - b) have integer coordinates. Then the interiors of the sides 
BC, C A ,  and AB contain respectively r - 1, s - 1, and t - 1 lattice points. By Pick's 
Theorem D = 2N1 + N2 - 2, where Nl is the number of lattice points in the interior of 
the triangle and N2 is the number of lattice points on its boundary (including the vertices). 
Consequently D = 4 + r + s + t .  Also 

b - a  c - a  
S 

and so D is divisible by st. Similarly, D is divisible by rs and r t .  
Since D is divisible by 3, we have r + s + t r 2 (mod 3). We now show that none of 

r, s ,  t is divisible by 3. Suppose that r is divisible by 3. Then b -c = (b -a) + (a -c) = 3e 

74 PROBLEMS AND SOLUTIONS [January 


