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Now consider how the area of R changes when the direction of / is changed by a small
angle ¢. If the point of support on I’ divides its side of the supporting square in the ratio
u : w — u, then the area of R changes by four small approximately triangular regions: It
decreases by (1/2)r(I")¢ + o(¢), increases by (1/2)u¢ + o(¢p), decreases by (1/2)(w —
u)¢ + o(¢), and increases by (1/2)r (I")¢ + o(¢). Thus, the area of R changes by the sum
(1/2)Ru — w)¢ + o(¢). Since this is 0, we have 2u — w = 0, and thus the support point
on !’ is midway between the two support lines perpendicular to I’

Solved also by S. S. Kim (Korea), J. G. Merickel, GCHQ Problems Group (U. K.), and the proposer.

Tight Bounds for the Normal Distribution

10611 [1997, 665]. Proposed by Zoltdn Sasvdri, Technical University of Dresden, Dresden,
Germany. Find the largest value of a and the smallest value of b for which the inequalities
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hold for all x > 0, where ®(x) = =¥2 12 gy,
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Solution by Hongwei Chen, Christopher Newport University, Newport News, VA. We show
that @ = 1/2 and b = 2/ are the best possible constants for which the stated inequalities

hold. Since fi)oo ey’ dy = [° e’ /2 dy = /m /2, the stated inequalities are equivalent

to
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where f(x) = J_%—E f(f eV’ dy. If the second inequality of (1) holds for all x > 0, then
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as x — 0, which implies b > 2/x. Similarly, if the first inequality of (1) holds for all
x > 0, then
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as x — oo. Dividing each side by ex'12 yieldsa < 1/2.
To show that inequalities (1) hold for all x > 0 whena = 1/2 and b = 2 /7, we write
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Let D =[0,x]% D ={(»,2):0<y,0<z, y*+22 <x*},and Dy ={(y,2): 0 < y,
0<z, y?+2°< (4/m)x?}. We have the inequalities

_l_ff e'—(y2+22)/2a’ya'z < Lffe_(y2+22)/2dydz < _l_ff e—(y2+22)/2dydz, (2)
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the first because D; C D, and the second because D and D, have the same area and
e~ OH2 < o= @/mx? for (y,2) € D — D; while e~ P42 5 =@Mt g4, (y,2) €
D, — D. Evaluating the outer integrals in (2) in polar coordinates, we obtain
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which is equivalent to (1).

Solved also by P. Alsholm (Denmark), J. Anglesio (France), P. Bracken (Canada), B. Burdick, G. G. Chappell, P. Devaraj (India),
G. Keselman, K.-W. Lau (Hong Kong), J. H. Lindsey II, A. Stadler, GCHQ Problems Group (U. K.), NCCU Problems Group,
NSA Problems Group, WMC Problems Group, and the proposer.
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