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More on Paperfolding 


Dmitry Fuchs and Serge Tabachnikov 

It is a common knowledge that folding a sheet of paper yields a straight line. We 
start our discussion of paperfolding with a mathematical explanation of this 
phenomenon. The model for a paper sheet is a piece of the plane; folding is an 
isometry of the part of the plane on one side of the fold to another, the fold being 
the curve of fixed points of this isometry (see Figure 1).The statement is that this 
curve is straight, that is, has zero curvature. 

Figure 1 

If not, consider an arc y of the fold with nonvanishing curvature. Let y+ be the 
curve at (small) distance E from y on the concave side, and let y be the 
corresponding curve on the convex side, as illustrated in Figure 2. Then 

length y+> length y > length y- , 
where the difference between length y+ and length y is of order E . length y .  
curvaturey. On the other hand, the isometry takes y+ to y- ,  so lengthy+= 
length y-.  This is a contradiction. 

Figure 2 
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In spite of what has just been said, one can fold paper along an arbitrary smooth 
curve! The reader is invited to perform an experiment: draw a curve on a sheet of 
paper and slightly fold the paper along the curve. A word of practical advice: press 
hard when drawing the curve. It also helps to cut a neighborhood of the curve, for 
it is inconvenient to work with too large a sheet. A more serious reason for 
restricting to a neighborhood is that this way one avoids self-intersections of the 
sheets, unavoidable otherwise. The result looks somewhat like Figure 3ia): 

Figure 3 

One may even start with a closed curve drawn on paper. To be able to fold, one 
has to cut a hole inside the curve; the result is shown in Figure 4. 

Figure 4 

It goes without saying that the argument in the opening paragraphs of this 
article does not contradict the possibility of folding along a curve: the two sheets in 
Figure 3ia) meet at a nonzero angle. To fix terminology call the curve drawn on 
paper the fold and denote it by r ;  call the curve in space obtained by folding along 
r the ridge and denote it by y .  The above described experiments and dozens of 
similar ones that kept us busy lately reveal the following list of observations: 

(1) 	It is possible to start with an arbitrary smooth fold and obtain an arbitrary ridge 
provided the ridge is "more curved" than the fold. 
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(2) 	If the ridge is only slightly more curved than the fold, then the neighborhood of 
the fold to be folded should be taken very thin, at least from the side of the 
convex domain of the plane bounded by the fold. 

(3)  If the fold has an inflection point (i.e., point of zero curvature) then the 
corresponding point of the ridge is also an inflection point (notice that, unlike 
plane curves, a generic space curve does not have inflection points at all). 

(4) 	If the fold is a closed strictly convex curve then the ridge has a nonzero torsion, 
that is, does not lie in one plane. 

( 5 )  If the fold is a nonclosed arc, the folded paper tends to occupy such a position 
that the ridge lies in a plane, and the angle made by the two sheets is constant 
along the ridge. 

What follows is an attempt to explain these experimental observations. A 
surface obtained by bending, without folding, a paper sheet is a developable 
surface, that is, a surface locally isometric to the plane (one cannot stretch paper!). 
The theory of such surfaces is due to Euler; its main results are as follows. A 
developable surface is a ruled surface, i.e., it consists of a one-parameter family of 
straight lines called rulings. These lines are not arbitrary: they are tangent to a 
certain space curve called the edge of regression (this description does not include 
two special cases, cylinders and cones, which are also developable surfaces). The 
tangent planes to a developable surface along every ruling coincide: one can put 
not only a knitting needle on such a surface but also a ruler. Thus a developable 
surface is the envelope of a one-parameter family of planes (see Figure 5). 

Figure 5 

Consider Figure 3(b). One sees two developable surfaces intersecting along a 
space curve y. Unfolding either of the surfaces to the plane transforms y to the 
same plane curve T. Reverse the situation and pose the following question: given a 
plane curve r ,a space curve y and an isometry f : r -t y, is it possible to extend f 
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to an isometric embedding of a plane neighborhood of r to space? Said differ-
ently, can one bend a sheet of paper with a curve r drawn on it so that r bends to 
a given space curve y?  

Theorem. Assume that for every x E r the absolute value of the curvature of y at 
point f(x) is greater than that of r at x. Then there exist exactly two extensions off to 
isometric embeddings of a plane neighborhood of r to space. 

These two embedded surfaces are the sheets intersecting along the ridge in 
Fig. 3(b). Extending the sheets beyond the ridge one obtains another configuration 
of sheets that meet along y. Thus there are exactly two ways to fold paper along r 
to produce the curve y. This explains and extends the first of the previously 
mentioned observations. 

If y lies in a plane, one of the sheets is obtained from another by reflection in 
this plane. In the general case of a nonplanar curve y the tangent planes of the 
two sheets are symmetric with respect to the osculating plane of y at its every 
point. 

Proofi Parametrize the curves y and r by the arclength parameter t so that 
y(t) = f(T(t)). Let the desired developable surface S make the angle cu(t) with the 
osculating plane of the curve y(t) (well defined since, by assumption, the curvature 
of y never vanishes). Denote by k(t) the curvature of the space curve y and by 
K(t) that of the plane curve r. The geodesic curvature vector of y in S is the 
projection of the curvature vector of y in space onto S ;  thus the geodesic 
curvature of y equals k(t)coscu(t). Since an isometry preserves the geodesic 
curvature of curves, kcos cu = K. This equation uniquely determines the nonvanish-
ing function cu(t) up to the substitution cu -+ .ir - a. To construct the developable 
surface S from the function cu(t), consider the plane through point y(t) that 
makes the angle cu(t) with the osculating plane of y. Such planes constitute a 
one-parameter family, and according to the above described general theory, their 
envelope is a developable surface. 

Remarks. 1. The theorem is hardly new: it is mentioned as an exercise in [2]with a 
reference to [I]. For a later discussion of paperfolding see [3]. 

2. A direct computation involving the Frenet formulas for y (which we omit) 
makes it possible to find the angle P(t) made by the rulings l(t) with the curve y(t) 
in terms of the torsion ~ ( t )of y :  

For the two developable surfaces corresponding to the angles a ( t )  and .rr - cu(t) 
one has: 

Therefore the ridge y is a plane curve (i.e., K = 0) if and only if PI + P, = .ir. In 
this case, unfolding the two sheets on the plane yields the straight rulings that 
extend each other on both sides of the fold T;see Figure 6. 

30 MORE ON PAPERFOLDING [January 



Figure 6 

The reader with a taste for further experimentation may find the following one 
of interest. Start with a fold r and tape a number of pins on both its sides. In this 
way one prescribes the angles P,(t) and P,(t). Then fold along r, as illustrated in 
Figure 7. 

Remark 2 may be used to explain the second of our experimental observa- 
tions. Namely, since cosa(t)  = K(t)/k(t), the formula (1) for cotP(t) may be 
rewritten as 

a l ( t )  - ~ ( t )
co tP( t )  = Jko'. 

Assume that K(t) is close to k(t); then a ( t )  is close to zero. We need, however, to 
assume that a l ( t )  is also close to zero. If, moreover, ~ ( t )  is bounded away from 
zero, then a l ( t )  is small, and cotP(t) is large; hence the angle P(t)  is small. It is 
clear that straight lines crossing the boundary of a convex domain in the plane at 
small angles cannot penetrate deep in the domain; hence, they have to cross each 
other near the boundary (see Figure 8). 

Figure 7 

But the rulings of a non-self-intersecting developable surface do not cross each 
other. Hence, to avoid crossings we need to make the neighborhood of the fold 
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Figure 8 

thin. The limit case of this observation is particularly interesting. Suppose that 
K = k. Then the isometry between the fold and the ridge cannot be extended into 
the convex domain bounded by the fold at all. It can be extended into the concave 
domain, and we get a developable surface, for which the edge is the edge of 
regression. Indeed, formula (1 )  for cot P ( t )  gives cot P ( t )  = a;hence P ( t )  = 0, and 
the rulings of the surface are all tangent to the ridge. Of course, in this way we get 
only one of the two pieces of the surface, cut along the edge of regression. The 
other piece may be made of another copy of the same concave domain. The 
difference between the two pieces is that for each tangent to the boundary of our 
concave domain, divided into two halves by the point of tangency, one half is 
straight on one of the pieces and the other half is straight on the other piece. The 
image of the whole tangent on each piece is a curve, half of which is straight and 
half of which is curved, as illustrated in Figure 9. 

Figure 9 

The union of the two pieces with the images of the two tangents looks like 
Figure 10. 

Figure 10 
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As a by-product of these observations we learn how to make a paper model of a 
developable surface with a prescribed edge of regression (without inflection 
points). To do this we should draw a planar curve whose curvature is precisely the 
same as that of the intended edge of regression; two copies of this drawing should 
be made on two separate sheets of paper. Then we cut the sheets along the curves 
and take the concave portions of both. After this we bend the two pieces to make 
their edges fit into the given spatial curve. This may be done in two different ways, 
and we must bend our (identical) pieces into different surfaces; these two surfaces 
comprise the developable surface we are constructing. Since the "angle" between 
the two pieces should be 0, it may be useful to glue the two pieces before bending 
along a very thin neighborhood of the edges. But be aware, that this bending is not 
even a twice differentiable mapping (this is why we used quotation marks for the 
word "angle"), and the paper will be resistant to this construction. Pins, attached 
to the two pieces tangentially to the edges (as shown on Figure 11) may help. 

Figure 11 

Back to our list of experimental observations. The first two have been explained, 
proceed to the third one. Let Rt , )  be a nondegenerate inflection point, so the fold 
looks like a cubic parabola near this point (see Figure 12). 

Figure 12 

Then K(t,) = 0 and, according to the already familiar formula kcosa = K, either 
a(t,) = n-/2 or k(t,) = 0. We want to show that the latter possibility holds. 
Suppose not; then both sheets are perpendicular to the osculating plane of y at 
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point y( to) and, therefore, coincide. Moreover, if k ( t o )# 0 then the projection of 
the curvature vector of the space curve y onto each sheet is the vector of the 
geodesic curvature therein. This vector lies on one side of y on the surface at 
points of the form y(t ,  - E ) just before the inflection point and on the other side 
at points y(to + E ) just after it. Therefore the function a ( t ) - n-/2 changes sign at 
t = to. This means that the two sheets pass through each other at t = to. Possible 
in the class of immersions, this cannot happen with real paper. Thus k ( t o )= 0, 
that is, the ridge has an inflection point. 

Next, consider the fourth observation of our list. Assume that both y and r are 
closed plane curves and r is strictly convex. The relation between the curvatures 
still holds: kcosa = K, and K ( t ) does not vanish. Hence k ( t )  2 K ( t ) for all t and 
l k ( t ) > l K ( t )  unless a ( t )  identically vanishes. On the other hand, the integral 
curvature of a simple closed plane curve equals 2n-, so the above integrals must be 
equal. This is a contradiction. It is interesting that if r is closed nonconuex curve, 
one can nontrivially bend paper along l- keeping r in the plane; see Figure 13. 

Figure 13 

Finally we turn to the fifth experimantal observation. This one takes us into 
dangerous waters because its explanation requires further assumptions concerning 
elasticity properties of paper. A strip of paper resists twisting: being relaxed it 
tends to become flat. Consider a space curve y ( t )  parametrized by the arclength. 
Let S be a thin strip along y and u(t)  the unit normal vector field to y in S.  
Define the twist of S to be the length of the projection of the vector u ' ( t ) to the 
normal plane of y( t ) .  Our assumption is that a paper strip tends to minimize its 
twist. Let the strip make the angle a ( t )with the osculating plane of the curve 7 0 ) .  
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Then a computation, similar to the one mentioned in Remark 2, gives the value 
I K ( ~ ) - al(t)lfor the twist. Folding paper, one produces two strips along the ridge 
y(t), the angles being a(t) and .rr - a(t).The twists of these strips are equal to 

I K  - all and I K  + all. Both quantities attain minimum if ~ ( t )  a( t )  is= 0 and 
constant. This appears to explain the fifth experimental observation. 
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Cicero on "pure" vs. "applied" science . . . 
Moreover, Catulus, if you ask me my personal opinion as to the 
study in question, I do not think that a person of ability, and 
acquainted at first hand with public life and procedure in parlia- 
ment and the law-courts, requires as much time as has been taken 
for themselves by those who have spent the whole term of their life 
in study. For all branches of knowledge are handled by those who 
apply them to practice in a different manner from that in which 
they are handled by those who take their pleasure in the pursuit of 
the sciences themselves and have no intention of following any 
other career. 

De Oratore, 111. xxiii. 86 
Contributed by Adi Ben-Israel, Rutgers University 

19991 	 35MORE ON PAPERFOLDING 

mailto:fuchs@comp.ucdauis.edu
mailto:serge@math

