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Cluster Primes 

Richard Blecksmith, Paul Erdos, and J. L. Selfridge 

1. INTRODUCTION. A prime p > 2 is called a cluster prime if every even 
positive integer less than p - 2 can be written as a difference of two primes 
q - q', where q and q' are both less than or equal to p .  Due to the concentration 
of primes at the beginning of the positive numbers, the first 23 odd primes 3, 5, 7, 
11,. . . ,89 are all cluster primes. The smallest non-cluster prime is 97: the previous 
prime is 89 and so 88 = 97 - 9 is not a difference of two primes smaller than 98. 
In general, if p is a cluster prime, then there must be enough primes in a "small" 
neighborhood to the left of p so that the even numbers p - 9, p - 15, p - 21, 
p - 25, etc., can all be written as the difference of primes less than p. 

The notion of cluster primes is reminiscent of the notion of prime constella- 
tions. The most famous prime constellation is that of the twin primes { p  - 2, p}. 
More elaborate constellations such as { p  - 8, p - 6, p - 2, p} have also been 
studied [4, pp. 64-68]. In a prime constellation both the number of primes and the 
differences between them are fixed. There is no guarantee that the largest prime in 
a prime constellation is a cluster prime. A sparse set of primes may lie just in front 
of this constellation. The first pair of twin primes { p  - 2, p} for which p is not a 
cluster prime is {227,229}, because the number p - 27 = 202 is not a difference of 
primes less than 230. To see this, observe that 202 = 211 - 9 = 223 - 21 = 227 
- 25, and 211,223,227 (the twin of 229) are the only primes between 202 and 228. 
We show in the proof of Theorem 1 that the number of primes in a small interval 
just before a cluster prime p grows in size with p. In this way, a cluster prime can 
be thought of as the largest prime in a "galaxy" of primes. 

It is reasonable to expect that among the primes, the cluster primes become 
increasingly rare. In spite of the initial head start of 23 consecutive cluster primes, 
the non-cluster primes quickly catch up, so that by the prime 2251 we have 167 
cluster primes and 167 non-cluster primes. Starting with 2267, the next prime after 
2251, the cluster primes begin to lag further and further behind. When we reach 
l0l3, the non-cluster primes outnumber the cluster primes by a ratio of about 325 
to 1. 

The simplest question we can ask about the distribution of cluster primes is: 

Are there infinitely many clusterpiimes? 

An affirmative answer would imply that p,,,, -p, 5 6 for infinitely many primes 
p,, which is a well-known hopeless problem. We enjoy more success looking for an 
upper bound for .rr,(x), the number of cluster primes not exceeding x. In Section 2 
we show that eventually ?(x) is less than x/(log x)" for any fixed positive integer 
s. Our result "suggests" that the cluster primes are less numerous than the twin 
primes, although we have no way of proving that either of these two collections 
is infinite. Our theorem is powerful enough, however, to show that the sum of 
the reciprocals of the cluster primes converges, a result well-known for the 
twin primes. 
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In Section 3 we present an efficient algorithm, which, given a particular cluster 
prime p,, determines the next cluster prime greater than p,. We used this 
algorithm to compute the cluster primes up to loi3 and we give the values of r. ,(x)  
for powers x = l o k ,  where k ranges from 2 to 13. These data and a discussion of 
the results are presented in Section 4. We conclude with a comparison of the 
number of cluster primes versus the number of pairs of twin primes. 

2. AN UPPER BOUND FOR .rr,(x). We have the following result: 

Theorem 1. For every positive integer s,  there is a bound x ,  = x,(s) such that if 
x 2 x ,  then 

The proof is based on  the following two lemmas: 

Lemma 1. Let n ( x )  denote the number of primes I x .  Then for x 2 6, 
2 x  - 6 

r ( x )  < logx. 

Proof: We use the estimate of Rosser and Schoenfeld [5]: 
1 . 2 5 6 ~  

n ( x )  < , x > l .  

Since 
2 2  - 6 1 . 2 5 6 ~+ ( 0 . 7 ~- 6 )  1.2562 

> > ---
log x log x log x 

for all x 2 9, Lemma 1 follows for x 2 9. One can easily verify that the formula in 
the lemma holds for 6 5 x < 9. 

Our main tool in proving Theorem 1is the following application of Brun's sieve. 
The notation f ( x )  << g ( x )  means that for some constant M and value x,, 
1 f(x)l  IM g ( x )  for all x 2 x,. 

Lemma 2. Let s be a natural number, let d l , .  . . ,ds  be s distinct, nonzero integers, 
and let f ( x )  count the number of primes p in the interval 0 <p I x such that the 
differences p - d ,  are prime for each i = I ,  . . . ,s. Then 

where p ( p )  denotes the number of modulo p distinct numbers among the d,'s, and 
where the constant implied by the << -notation depends only on s. 

For a proof of this lemma, take y = x in Corollary 2.4.2 in [2, p. 811. 

Proof of Theorem 1: Suppose p is a cluster prime. We wish to get a lower bound 
on the number of primes in the interval [ p  - t ,  p ) ,  where t is a small positive 
integer, to be specified later. By the definition of cluster prime, every even number 
2r in the interval p - t I 2r I p - 3 must be of the form q - q', where q and qr  
are primes Ip.  Clearly q' must be 5 t.  By Lemma 1, if t 2 6 the number of 
these primes qr  is less than 2(t - 3)/log t .  On the other hand, there are more than 
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(t  - 3)/2 even numbers in the interval [ p  - t, p - 31. Thus there must be at least ,1 log t primes in [ p  - t, p). Define 

There are ( ways to place s numbers ql > q2 > ... > q, in the interval 
[ p  - t, p). (We allow the q, to be even to simplify the calculations.) Using the 
crude estimate i:1 5 nt" there are fewer than thho ices  for the s differences 
d, =p - q,, 1 I i I s. If the differences dl < ... < d, are fixed, Lemma 2 en- 
sures that the number of choices of p I x such that each p - d, is prime is at 
most Mx/(log x)"', where M is a constant depending only on s. Thus 

n 

< M  
(log x)'+' ts.  

Now given s, let t be the least positive integer satisfying equation (3). Taking x so 
large that t% log x, we have 

Theorem 1follows easily., 
A consequence of Theorem 1is the following result. 

Theorem 2. The sum of the reciprocals of the cluster primes is finite. 

Proof: If the set of cluster primes is finite, there is nothing to prove, so assume 
there are infinitely many, and denote the n-th cluster prime by q,. Consider 
Theorcm 1with s = 2. For n sufficiently large, 

But ?(q,) = n and (log qJ2 > (log n)2. Thus, for n sufficiently large, we have 
q, > n(1og n)2. Since the series Cn-'(log n)-2 converges, by the integral test, it 
follows that Cl/q, converges by the comparison test. rn 

It appears that a stronger result than Theorem 1may actually be true: 

Conjecture. For some constant a , we have 

This result would follow from Lemma 2 if we could guarantee that the implied 
constant in the lemma does not grow too fast as a function of s. 

3. THE ALGORITHM. Let p, be the nth prime. We describe an algorithm that 
inputs the index n of the current cluster prime p, and returns the index of the 
next cluster prime. The idea is simple. Since p, is a cluster prime, we know that 
every even integer from 2 to p, - 3 can be expressed as a difference of two primes 
not greater than p,. In order to check whether the next prime p,,, is also a 
cluster prime, we need examine only the even numbers p, - 1 through p,,, - 3. 
If p,,, -p, = 2, 4, or 6, then there is nothing to check; p,,, is the next cluster 
prime. If p,,, -p, 2 8, then p,,, is a non-cluster prime, since p,,, - 9 cannot 
be a difference of two smaller primes. In this case we examine the even numbers 
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pa+,- t, where t is an odd composite less than or equal to pa+,-p, + 1. For 
each such t we look ahead in the sequence of primes {pn+,+, I:=, until q' = t + 
pn+m+ -pn+, turns out to be prime. Here lies the significance of little m (as 
opposed to capital M )  in the algorithm: p,+,+, is the first prime for which the 
particular even number pn+,- t can be written as a difference pn+,+,- q' of 
primes; so we are at least m primes away from the next cluster prime at this stage 
of the algorithm. Capital M is the maximum number of primes to the next 
(possible) cluster prime, based on all of the previous values of m found so far. 
When we move on to the next prime at the end of the outer do-loop, we decrease 
M by 1, since we are now one prime closer to the cluster prime we are seeking. We 
continue processing consecutive primes until M = 0, indicating that we have 
finally reached the next cluster prime. For example, the next prime after the 
non-cluster prime p25 = 97 is p2, = 101. Since p25 - 9 =p,, - 13, 101 is the next 
cluster prime after 89. In our algorithm, we need a list of the prime differences 
diff [n] =pa+,-p,. We do not require the actual values of the primes themselves, 
just the differences, since 

m 

Pn+m+l - ~ n + l  = C d i f f [ n  + '1. 
i = l  

We also need a short list, named odd-comp, of the odd composites 9, 15, 21, 25, 
27, 33, etc., as well as a look-up table to tell when a "small" odd integer is prime. 

Algorithm Find-next-cluster-prime(n, current-prime). 

M = 0; 
do 

d = diff [n]; 
if (d > 6) 

for (i = 1; odd-comp[i] 5 d + 1; i = i + 1) 
m = 0; 
t = odd-comp [i]; 
repeat 

m = m + l ;  
t = t + diff [n + m]; 

until t is prime; 
i f ( m > M ) M = m ;  

n = n + l ;  
current-prime = current-prime + d; 
M = M - I ;  

while ( M  > 0) 
return n; 

It is worth pointing out that the efficiency of this algorithm is due to the fact 
that it always looks forward and never needs to backtrack. In actual practice, the 
program spends more time sieving for the prime differences than it does running 
the algorithm. 

4. DISTRIBUTION OF CLUSTER PRIMES UP TO 1013. We encoded this algo- 
rithm in a C program and ran it on a 300 MHz Sun Ultra 2 Workstation. Our goal 
was to tabulate the cluster primes up to 1013 in order to get an indication of their 
distribution. The following short table gives the number of cluster primes versus 
non-cluster primes for powers of 10. Here ?(XI, %(XI, and ~r,(x), respectively, 
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denote the number of cluster primes, non-cluster primes, and twin prime constella- 
tions less than or equal to x. Since we do not count 2 as a cluster or non-cluster 
prime, we have the equation + + 1 = ~ ( x ) ,which we can use as a 
check on the data. The values of r 2 ( x )  were computed by Brent [I] and can.also 
be found in [2, p. 2621. The last column gives the value of a! for which (4) becomes 
an equality, viz. a! = log (x/.rr,(x))/(loglog x ) ~ .  

By x = l o4  the non-cluster primes outnumber the cluster primes by a ratio of 
roughly 2 to 1.As expected, the ratio .ir,(lOk)/.rr,(lOk) increases for each exponent 
k, and when we reach loi3, approximately 0.3% of the primes are cluster primes. 
We can show this behavior by using Theorem 1 together with the prime number 
theorem, which states that r ( x ) ,  the number of primes not greater than x, is 
asymptotic to x/log x. Since .rr,(x) is eventually less than x/(log x ) ~ ,  it follows that 
the ratio . i r , (x) /~(x)  approaches 0 as x tends to infinity. Thus, "most" primes are 
non-cluster primes and the ratio .ir,(x)/.ir,(x) = ( ~ ( x )- 1)(rC(x))-l - 1 must 
tend to infinity. 

It is interesting to contrast the columns for .rr, and q. The ratios 
rn( lokf  l)/rn(lOk) seem to be approaching the limit 10. A proof of this observa- 
tion follows from the fact that is asymptotic to r ( x )  and from the prime 
number theorem: 

r, ,(1ok+l) r ( l o k + ' )  l o k + l  
lim = lim = lim 

k-= r n ( l o k )  k-= ~ ( 1 0 ~ )  k - =  ( k  + 1)10g 10 

For the cluster primes, the ratios .ir,(lOk+l)/.ir,(lOk) = 3increase from 4.24 for k 
to 5.83 for k = 12. It is difficult to predict a limit from such limited data. Heuristic 
considerations, however, suggest that rc (x)  has the shape xl-"("1, where h(x) is a 
function whose limit tends to 0 as x goes to infinity. If this estimate is correct, then 
the ratios rC(1okf l)/ .rr ,(lOk) would also tend to 10, though more slowly than the 
ratios for the non-cluster primes. 

As the program ran to 1013, the largest value of M in the algorithm 
Find-next-cluster-prime was 58 and the largest value of t was 1503. The largest 
number of consecutive non-cluster primes was 10,543, found between the cluster 
primes 8,353,771,390,333 and 8,353,771,707,107. The difference between these two 
primes is 316,774, the largest difference found up to loi3. 

It is worthwhile noting that past lo6, the number of cluster primes lags behind 
the number of twin primes. For x = 1012 the number of twin primes is roughly ten 
times larger than the number of cluster primes. To explain this phenomenon, put 
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s = 1and d, = 2 into Lemma 2 (Brun's sieve) to get the upper bound 

Brun used this estimate in 1921 to show that the sum of the reciprocals of the twin 
primes converges; the proof is essentially the same as our proof of Theorem 2. 
Comparing (5) with Theorem 1's estimate q ( x )  << x/(log x ) V o r  any positive 
integer s, we would expect the cluster primes to be rarer than the twin primes. In 
the interest of honesty, however, we must admit two facts. First, the estimate in (2) 
for holds for x 2 x,(s). On examining the proof of Theorem 1, the value of 
xO(s) is roughly xo(s) = ets ,where t = e4" For s = 3, this bound is x, = ee3', a 
number with approximately 1.87 X loL5decimal digits. It seems a bit presumptu- 
ous to think that we are seeing the effects of Theorem 1 with s = 3 for the 
comparatively small 13 digit numbers. The second remark is that although upper 
bounds may indicate what happens, they are not conclusive. For all we know, the 
number of cluster primes and twin primes could both be finite. In 1922 Hardy and 
Littlewood conjectured that T,(X) is asymptotic to 

P ( P - 2 )  dx 	 dx 
2 r Ip.3 ( p  - 112L (log X)  = 1.3203236321~ 

2 (log x12 ' 

This famous conjecture has been shown to be remarkably accurate in estimating 
the number of twin prime constellations [3, p. 661, and strengthens our belief that 
.rr,(x)awowm with x. That %(x) tends to infinity seems harder to prove. 
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