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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

Fermat's Last Theorem for Gaussian 

Integer Exponents 


John A. Zuehlke 

In this note, we observe that Wiles' Theorem [2] on the impossibility of 

for x, y, z positive rational numbers with integer exponents n # t-1, t-2 can be 
generalized to the case of Gaussian integer exponents v = n + im without addi- 
tional exceptions. The proof uses the Gelfond-Schneider Theorem [I], according to 
which aP is transcendental for ,6 algebraic but not rational and a algebraic 
# 0,s .  

The proof almost fits into the margin. In fact, from 

x u  + y u  =zu ,w i th  v = n  + im, m # 0 

it follows by taking the complex modulus squared that 

x" + 2xnyn cos 0 + y2* = zZn ,  with 0 = m log(x/y), 

so cos 8 is rational. Since, for any real number 8 whatsoever there is the identity 

e 2 i B  - 2cos Oeie + 1 = 0, 

it follows for the particular 8 that 

is algebraic. Then the Gelfond-Schneider Theorem, with a = x/y and ,6 = im 
forces x = y. Therefore 

forcing z = x similarly, contradicting y # 0. 
We remark that the generalization holds, with the same proof, for exponents 

v = n + im, with n an integer and m a real algebraic number. 
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