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THE EVOLUTION OF. .  . 

Edited by Abe Shenitzer 

Mathematics, York Uniuersity, North York, Ontario M3J IP3, Canada 

The Birth of Literal Algebra 

I. G. Bashmakova and G. S. Smirnova 
Translated from the Russian by Abe Shenitzer 

1. MATHEMATICS IN THE FIRST CENTURIES AD. DIOPHANTUS. The Baby- 
lonians developed a kind of numerical algebra. Then came Greek geometric 
algebra. 

The third-very important-stage of the development of algebra began in the 
first centuries AD and came to an end at the turn of the 17th century. Its 
beginning was marked by the introduction of literal symbolism by Diophantus of 
Alexandria and its end, by the creation of literal calculus in the works of Vikte and 
Descartes. It was then that algebra acquired its own distinctive language, which we 
use today. 

The first century BC was a period of Roman conquests and of Roman civil wars. 
Both took place in the territories of the Hellenistic states and the Roman 
provinces and were accompanied by physical and economic devastation. One after 
another, these states lost their independence. The last to fall was Egypt (30 BC). 
The horrors of war and the loss of faith in a secure tomorrow promoted the spread 
of religious and mystical teachings and undermined interest in the exact sciences, 
and in abstract problems in mathematics and astronomy. In Cicero's dialogue On 
tAe state one of the participants proposes a discussion of why two Suns were seen 
in the sky. But the topic is rejected, for "even if we acquired profound insight into 
this matter, we would not become better or happier." 

In the second half of the first century BC mathematical investigations came to a 
virtual halt and there was an interruption in the transmission of the scientific 
tradition. 

At the beginning of the new era, economic conditions in the Hellenistic 
countries, now turned Roman provinces, gradually improved, and there was a 
revival of literature, art, and science. In fact, the 2nd century came to be known as 
the Greek Renaissance. It was the age of writers such as Plutarch and Lucian and 
of scholars such as Claudius Ptolemy. 

Alexandria continued its role as the cultural and scientific center of antiquity 
and, in this respect, Rome was never its rival. Nor did it ever develop an interest in 
the depths of Hellenistic science. As noted by Cicero in his Tusculanae disputa- 
tiones, the Romans, unlike the Greeks, did not appreciate geometry; just as in the 
case of arithmetic, they stopped at narrow, practical knowledge of this subject. 

Translator'snote. This article is the third chapter of an essay by I. G. Bashmakova and G. S. Smirnova 
devoted to the rise and evolution of algebra. The whole essay is being translated by Abe Shenitzer and 
is being reviewed for publication by the Mathematical Association of America. 

The first two sentences of this article were added by the translator. 
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They had little regard for all of mathematics. Even accounting, surveying, and 
astronomical observations were left to the Greeks, the Syrians, and other con- 
quered nations. According to Vergil, the destiny of Romans was wise government 
of the world. 

The revival of the Alexandrian school was accompanied by a fundamental 
change of orientation of its mathematical research. During the Hellenistic period 
geometry was the foundation of Greek mathematics; algebra had not, as yet, 
become an independent science but developed within the framework of geometry, 
and even the arithmetic of whole numbers was constructed geometrically. Now 
number became the foundation. This resulted in the arithmetization of all mathe- 
matics, the elimination of geometric justifications, and the emergence and inde- 
pendent evolution of algebra. 

We encounter the return to numerical algebra already in the works of the 
outstanding mathematician, mechanician, and engineer Heron of Alexandria (1st 
century AD). In his books Metrica, Geometrica, and others, books that resemble in 
many respects our handbooks for engineers, one finds rules for the computation of 
areas and volumes, solutions of numerical quadratic equations, and interesting 
problems that reduce to indeterminate equations. In particular, they contain the 
famous "Heron formula" for the computation of the area of a triangle given its 
sides a ,  b, c: 

s =J P ( P - ~ ) ( P - ~ ) ( P - - c ) ,  

where p = (a  + b + c)/2. Here the expression under the square root sign is a 
product of four segments, and thus an expression totally inadmissible in geometric 
algebra. It is clear that Heron thought of segments as numbers, whose products are 
likewise numbers. 

In his famous book, known under its Arabized name Almagest, Claudius 
Ptolemy, when computing tables of chords, identified ratios of magnitudes with 
numbers, and the operation of "composition " of ratios-defined in Euclid's 
Elements-with ordinary multiplication. 

The new tendencies found their clearest expression in the works of Diophantus 
of Alexandria, who founded two disciplines: algebra and Diophantine analysis. 

We know next to nothing about Diophantus himself. On the basis of certain 
indirect remarks, Paul Tannery, the eminent French historian of mathematics, 
concluded that Diophantus lived in the middle of the 3rd century AD. On the 
other hand, Renaissance scholars who discovered Diophantus' works, supposed 
that he lived at the time of Antoninus Pius, i.e., approximately in the middle of the 
2nd century. The epigram in Anthologia Palatina provides the following informa- 
tion: "Here you see the tomb containing the remains of Diophantus, it is remark- 
able: artfully it tells the measures of his life. God granted him to be a boy for the 
sixth part of his life, and adding a twelfth part to this, He clothed his cheeks with 
down; He lit him the light of wedlock after a seventh part, and five years after his 
marriage He  granted him a son. Alas! late-born wretched child; after attaining the 
measure of half his father's life, chill Fate took him. After consoling his grief by 
this science of numbers for four years he ended his life. By this device of numbers 
tell us the extent of his life." A simple computation shows that Diophantus died at 
the age of 84 years. This is all we know about him. 

2. DIOPHANTUS' Arithmetica. ITS DOMAIN OF NUMBERS AND SYMBOL 
ISM. Only two (incomplete) works of Diophantus have come down to us. One is 
his Anthmetica (six books out of thirteen; four more books in Arabic, attributed to 
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Diophantus, were found in 1973. They will be discussed in the sequel). The other is 
a collection of excerpts from his treatise On polygonal numbers. We discuss only the 
first of these works. 

Arithmetica is not a theoretical work resembling Euclid's Elements or Apollo- 
nius' Conic sections but a collection of (189) problems, each of which is provided 
with one or more solutions and with relevant explanations. At the beginning of the 
'first book there is a short algebraic introduction, which is basically the first account 
of the foundations of algebra. Here the author constructs the field of rational 
numbers, introduces literal symbolism, and gives rules for operating with polynomi- 
als and equations. 

Already Heron regarded positive rational numbers as legitimate numbers (in 
classical ancient mathematics "number" denoted a collection of units, i.e., a 
natural number). While Diophantus defined a number as a collection of units, 
throughout Arithmetica he called every positive rational solution of one of his 
problems "number" (&P~Op6s) ,  i.e., he extended the notion of number to all of 
Q'. But this was not good enough for the purposes of algebra, and so Diophantus 
took the next decisive step of introducing negative numbers. It was only then that 
he obtained a system closed under the four operations of algebra, i.e., a field. 

How did Diophantus introduce these new objects? Today we would say that he 
used the axiomatic method: he introduced a new object called "deficiencyn( hs'i$~s, 
from hs'in-w-to lack) and stated rules for operating with it. He writes: "deficiency 
multiplied by deficiency yields availability (i.e., a positive number (the authors)); 
deficiency multiplied by availability yields deficiency; and the symbol for deficiency 
is A ,  an inverted and shortened (letter) @ "  (Diophantus. Arithmetica. Definition 
1x1. In other words, he formulated the rule of signs, which we can write as follows: 

( - 1  x ( - 1  = ( + I ,  
( - 1  x ( + >= ( -1 .  

Diophantus did not formulate rules for addition and subtraction of the new 
numbers but he used them extensively in his books. Thus, while solving problem 
111, (i.e., Problem 8 in Book III), he needs to subtract 2x + 7 from x2  + 4x + 1. 
The result is x2  + 2x - 6, i.e., here he carries out the operation 1 - 7 = -6. In 
problem VI,,, 90 - 15x2 is subtracted from 54 and the result is 15x2 - 36. Thus 
here 15x2 is subtracted from zero; in other words, Diophantus is using the rule 
-(-a) = a. 

We note that Diophantus used negative numbers only in intermediate computa- 
tions and sought solutions only in the domain of positive rational numbers. A 
similar situation developed later in connection with the introduction of complex 
numbers. Initially they were regarded as just convenient symbols for obtaining 
results involving "genuine," i.e., real, numbers. 

Diophantus also introduced literal signs for an unknown and its powers. He 
called an unknown a "n~mber"(&~~~pCLds)  and denoted it by the special symbol s. 
It is possible that this symbol was introduced before him. We find it in the 
Michigan papyrus (2nd century AD) as well as in a table appended to Heron's 
Geometnca. But Diophantus boldly breaks with geometric algebra by introducing 
special symbols for the first six positive powers of the unknown, the first six negative 
powers, and for its zeroth power. While the square and cube of the unknown could 
be interpreted geometrically, its 4th, 5th, and 6th powers could not be so repre- 
sented. Nor could the negative powers of the unknown. 

Diophantus denoted the positive powers of the unknown as follows: 

X-S; x2-A"; x3-K"; x4-AUA; xS-AK"; x6-KUK. 
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He defined negative powers as inverses of the corresponding positive powers 
and denoted them by adding to the exponents of the positive powers the symbol X .  
For example, he denoted xP2 = 1/x2 by AuX. 

He denoted the zeroth power of the unknown by the symbol k,that is by the 
first two letters in M6vcCs, or unity. 

Then he set down a "multiplication table" for powers of the unknown that can 
be briefly written as follows: 

He singled out two rules that correspond to the two basic axioms that we use for 
defining a group: 

xm. 1 = xm (definition VII); (1) 

xmx-" = 1 (definition VI). (2) 

In addition, Diophantus used the symbol ' la  for equality, and the symbol for 
an indeterminate square. All this enabled him to write equations in literal form. 
Since he did not use a symbol for addition, he first set down all positive terms, 
then the minus sign (i.e., A), then the negative terms. For example, the equation 

x3 - 2x2 + lox - 1 = 5 
was written as 

K ~ E S ~A & h $ ~ ' i a $ z .  

Here E = 1, L = 10, p = 2, E = 5 (we recall that the Greeks used the letters of 
the alphabet to denote numbers). 

In the "Introduction" Diophantus formulated two basic rules of transformation 
of equations: 1) the rule for transfer of a term from one side of an equation to the 
other with changed sign and 2) reduction of like terms. Later, these two rules 
became well known under their Arabized names of a1 - jabr and a1 - muqiibala. 

Diophantus also used the rule of substitution in a masterly way but never 
formulated it. 

We can say that in the introduction Diophantus defined the field Q of rational 
numbers, introduced symbols for an unknown and its powers, as well as symbols 
for equality and for negative numbers. 

Before discussing the contents of Anthmetica we consider the possibilities and 
limitations of Diophantus' symbolism. Getting ahead of the story, we can say that, 
basically, Diophantus considered in his work indeterminate equations, i.e., equa-
tions with two or more unknowns. But he introduced symbols for just one unknown 
and its powers. How did he proceed when solving problems? 

First he stated each problem in general form. For example: "To decompose a 
square into a sum of squares" (problem 11,). Now we would write this problem as 

How could Diophantus write this equation with just one symbol for an unknown 
and without symbols for parameters (in this case a)? He proceeded as follows: 
after the general formulation he assigned concrete values to the parameters-in 
the present case he put a2  = 16. Then he denoted one unknown by his special 
symbol (we will use the letter t instead) and expressed the remaining unknowns as 
linear, quadratic, or more complex rational functions of that unknown and of the 
parameters. In case of the present example, one unknown is denoted by t and the 
other by kt - a or, as Diophantus puts it, "a certain number of t's minus as many 
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units as are contained in the side of 16,"i.e., instead of a he takes 4 and instead of 
the parameter k-the number 2. But by saying "a certain number of t's7' he 
indicates that the number 2 plays the role of an arbitrary parameter. Thus 
Diophantus' version of our equation is 

t2  + (2t - 41, = 16, 

so that 
x = t = 16/5; y = 2t - 4 = 12/5 

One might think that Diophantus was satisfied with finding a single solution. 
But this is not so. In the process of solving problem III,, he finds it necessary to 
decompose a square into two squares. In this connection he writes: "We know that 
a square can be decomposed into a sum of squares in infinitely many ways." 

The use of a concrete number to denote an arbitrary parameter has the virtue 
of simplicity. Sometimes it turned out that the parameter could not be selected 
arbitrarily, that it had to satisfy additional conditions. In such cases Diophantus 
determined these conditions. Thus problem VI, reduces to the system 

x: + x, = y3, X1 + x, = y.  

Diophantus puts x, = t, xl  = Pt ,  where P = 2. Then from the second equation we 
obtain y = ( p + lit, and from the first 

1
t2 = 

( p  + 113- p 3 '  
Since p = 2, t2  = 1/19, i.e., t is not rational. In order to obtain a rational 

solution Diophantus looks at the way t2  is expressed in terms of the parameter p .  
The expression in question is a fraction whose numerator, 1, is a square. But then 
the denominator must also be a square: 

Diophantus took as the new unknown p = r (he denoted it by the same symbol as 
the original unknown x,) and obtained 

3 r 2 + 3 7 +  1 = 0. 

Solving this equation by his method (which we will describe in detail in the next 
section) Diophantus obtained 

3 + 2h
7 =  -

h 2 - 3 ,  

i.e., the parameter could only be chosen from the class of numbers ((3 + 2h)/ 
(h2 - 3)). Diophantus takes A = 2 and obtains p = 7. Then he goes back to 
solving the original problem. 

Diophantus often deliberately chooses for parameters numbers that do not lead 
to solutions. He does this in order to show how to analyze problems. 

Thus concrete numbers play two roles in Arithmetica. One role is that of 
ordinary numbers and the other is that of symbols for arbitrary parameters. 
Numbers were destined to play the latter role almost to the end of the 16th 
century. 

Time to sum up. Diophantus was first to reduce determinate and indeterminate 
problems to equations. We may say that for a large class of problems of arithmetic 
and algebra he did the same thing that Descartes was later to do for problems of 
geometry, namely he reduced them to setting up and solving algebraic equations. 
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Indeed, in order to solve problems-arithmetical in the case of Diophantus and 
geometric in the case of Descartes-both set up algebraic equations that they 
subsequently transformed and solved in accordance with the rules of algebra. Also, 
the transformations involved- such as elimination of unknowns, substitutions, and 
reduction of similar terms-had no direct arithmetic or geometric significance and 
were not subject to extensive interpretations. In both cases such interpretations 
were reserved for the final results. We are used to associating this important step 
with Descartes' creation of analytic geometry, but long before Descartes this step 
was taken by Diophantus in his Arithmetica. Before exposure to Arithmetica, none 
of the scholars of the period between the 13th and 16th centuries entertained the 
idea of applying algebra to the solution of number-theoretic problems. 

3. THE CONTENTS OF Arithmetica. DIOPHANTUS' METHODS. We have al- 
ready mentioned that Arithmetica is a collection of problems with solutions. This 
may create the impression that it is not a theoretical work. But a more careful 
reading makes it clear that the purpose of the painstaking choice and deliberate 
placement of problems was to illustrate the application of specific general meth- 
ods. It is a characteristic of ancient mathematics that methods were not formulated 
apart from problems but were disclosed in the process of their solution. We recall 
that the famous "method of exhaustion'-the first variant of the theory of 
limits-was not set down in pure form either by its author Eudoxus of Cnidus or 
by Archimedes. It was mathematicians of the 16th and 17th centuries who isolated 
it by analyzing Euclid's Elements and Archimedes' quadratures and formulated it 
in general terms. The same applies to Diophantus' Arithmetica. As we show in the 
sequel, his methods were isolated in the 16th and 17th centuries by Italian and 
French mathematicians. Following them, we will try to isolate some of these 
methods and state them in general form. 

In Book I Diophantus solved particular determinate linear and quadratic 
equations. The remaining books deal with the solution of indeterminate equations, 
i.e., equations of the form 

F(xl,  . . . ,x,,) a polynomial, or of systems of such equations: 

F1(xl , .  . . ,x,) = 0; 
. . . . . . . . . . . . . . . .  
Fk(x l , . . . ,x,) = 0, k < n.  

Diophantus looks for positive rational solutions x:, x!, . . . ,xf ,  xp E QC,of such 
equations or of such systems. 

It is clear that to solve his determinate equations Diophantus needed only 
symbols for x and x2  and not for xi" -6 6 n 6 6. In other words, he extended his 
domain of numbers and introduced most of his symbols to investigate and solve 
indeterminate equations, where he really needed higher powers of the unknown as 
well as its negative powers. 

Thus the birth of literal algebra was connected not with determinate but with 
indeterminate equations. 

Here we present just one of Diophantus' methods, namely his method for 
finding the rational solutions of a quadratic equation in two unknowns: 

where F2(x, y) is a quadratic polynomial with rational coefficients. 

62 THE EVOLUTION OF.  . . [January 



Basically, Diophantus proves the following theorem: if equation (3) has a 
rational solution (x,, yo) then it has infinitely many such solutions (x, y), and x 
and y are both rational functions (with rational coefficients) of a single parameter: 

x = cp(k) ,  Y = *(k ) .  (4) 

When presenting his methods we use modern algebraic symbolism. This is by 
now a standard procedure in historical-mathematical literature. 

Diophantus began by considering quadratic equations of the form 

y 2  = ax2 + bx + c, a ,  b, c E Q, (5) 
and put c = m2 (in other words, he assumed that the equation had two rational 
solutions (0, m) and (0, -m)). To find solutions he made the substitution 

y = l o c * m  (6) 

and obtained 

b f  2km b f  2km 
x = Y =  k 2 - a  m.

k2  - a 

By assigning to k all possible rational values (Diophantus took only values that 
yielded positive x and y) we obtain infinitely many solutions of equation (5) .  

We note that the substitutions (6) are the famous Euler substitutions that are 
applied to integrals of the form 

dx 


1 4ax2 + bx + c 

We mentioned earlier problem 11,, which reduces to the equation 

x2  + y 2  = a2 ,  (7) 
and recall that Diophantus solved it by making the substitution 

x = t ;  y = k t - a ,  (8) 

and obtained (we are replacing his numerical values by appropriate letters) 

2k k2  - 1 
x = t = a -

1 + k 2 '. Y=a- k2 + 1 ' 

To see the sense of this solution and to appreciate its generality we must look at 
its geometric interpretation. Equation (7) determines a circle of radius a centered 
at the origin, and the substitution (8) is the equation of a straight line with slope k 
passing through the point A(0, -a) on that circle (Figure 1). It is clear that the 
straight line (8) intersects the circle (7) in another point B with rational coordi- 
nates. Conversely, if there is a point B, with rational coordinates (x,, y,) on the 
circle (7) then AB, is a straight line of the pencil (8) with rational slope k. Thus to 
every rational k there corresponds a rational point on the circle (7) and to every 
rational point on the circle (7) there corresponds a rational value of k. Hence 
Diophantus' method yields all rational solutions of equation (7). 

This argument shows that a conic with a rational point is birationally equivalent 
to a rational straight line. 

Next Diophantus considered the more general case when equation (5) has a 
rational point but the coefficient c is not a square. He first considered this case in 
problem 11,, which reduces to the equation 

x2  + y 2  = a 2  + b2 (9) 
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Figure 1 

(Diophantus put a = 2, b = 3). It is clear that equation (9) has the following four 
solutions: (a,  b), (-a,  b), (a,- b), and (-a ,  -b). Diophantus makes the substitu- 
tion 

x = t + a ,  y = k t - b  (10) 

and obtains t = 2(bk - a)/(l  + k2). Applying a geometric interpretation analo- 
gous to the one just used we see that, essentially, he is leading a straight line with 
slope k through (a, -b) on the circle (9). 

Diophantus considered a more general case in lemma 2, proposition VI,, and in 
the lemma for proposition VI,,: assuming that equation (5) has a rational solution 
(x,, y,) he made the substitution x = t + x, and obtained 

i.e., he reduced the problem to the case c = m2. 
Finally, he considered equation (5) in the case when a = cr2. He made the 

substitution (easily recognized as Euler's "second substitution" (the authors)) 

and obtained 

This case calls for a separate discussion. To understand why the straight line 
(11) intersects the conic section (5) in just one point we introduce projective 
coordinates (U, V, W) by putting x = U/W, y = V/W, i.e., we consider our conic 
in the projective plane p2.Then equation (5) takes the form 

The curve L so defined intersects the line at infinity W = 0 in two rational points: 
(1, a ,  0) and (1, - a ,  0). The straight line ( l l ) ,  whose equation in projective 
coordinates is 

V =  a U + k W ,  

passes through the first of these points. 
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In summary, we can say that Diophantus carried out a complete investigation of 
a quadratic indeterminate equation in two unknowns. Later, his analysis served 
as a model for the investigation of the question of rational points on curves of 
genus 0. 

Diophantus used more complex and more sophisticated methods to solve 
equations of the form 

and systems of the form 

which he called "double equalities." Readers interested in getting a deeper 
understanding of Diophantus' methods should consult the book by Bashmakova 
and Slavutin: A history of Diophantine analysisfrom Diophantus to Fermat (Russian) 
which contains further references to the literature. The history of Diophantus' 
methods extends all the way to the papers of PoincarC that appeared at the 
beginning of the 20th century. It was on the basis of these methods that PoincarC 
constructed an arithmetic of algebraic curves-an area of mathematics that is 
being intensively developed at the present time. 

We conclude our survey by considering Diophantus' problem III,,. This prob- 
lem reduces to a system of 8 equations in 12 unknowns: 

(x ,  + x2 + x3 + x,) 
2 + x, =y;, 

(x ,  + x 2  + x 3  + x 4 )  2 - x L  =z;; i = 1,2 ,3 ,4 .  

Diophantus notes that "in every right triangle the square of the hypotenuse 
remains a square if we add to it, or subtract from it, twice the product of its legs." 
This means that he must find four right triangles with the same hypotenuse. 
Indeed, let the sides of the four triangles be a,,bL,c, i = 1,2,3,4. Then it suffices 
to put x, + x2 + x3 + x, = ct, x, = 2aLb,t2, i = 1, . .. ,4.  Thus the problem re- 
duces to finding a number c that can be written as a sum of two squares in four 
different ways. Diophantus solves this essentially number-theoretic problem as 
follows: he takes two right triangles with sides 3,4,5 and 5,12,13 respectively, and 
multiplies the sides of each of them by the hypotenuse of the other. As a result he 
obtains two right triangles with the same hypotenuse: 39,42,65 and 25,60,65. Now 
5 = 1' + 22 and 13 = 22 + 32. Using the rule for composition of forms u2 + u2 
known already to the Babylonians, namely 

( u 2  + u 2 ) ( a 2+ p 2 )  = ( a u  - pu12 + ( a v  + pu)?  

= ( a ,  + pu)2  + ( a u  - ~ u ) ~ ,  

he obtains 

65 = 5 . 1 3  = (12 + 22)(22+ 32) = 42 + 72 = 8' + 12. 

Using Euclid's formulas for the general solution of x2  + y2 = z2  (i.e., z =p2+ q2;  
x =p2- q2; y = 2pq) we obtain two more right triangles with hypotenuse 65: 
33,56,65 and 63,16,65. This completes the solution of the problem. 
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In connection with this problem Fermat stated that a prime of the form 4n + 1 
could be written as a sum of squares in just one way. Then he gave a formula for 
the determination of the number of ways in which a given number can be written 
as a sum of squares. Thus problems involving indeterminate equations led to 
number-theoretic insights. 

Did Diophantus know the theorems formulated by Fermat? It is possible that 
he did. Jacobi offered a reconstruction of Diophantus' conjectured proofs, but the 
answer to this question remains hypothetical. 

One can hardly overestimate the significance of Diophantus' Arithmetica for the 
subsequent history of algebra. It is no exaggeration to say that its role was 
comparable to the role of Archimedes' treatises in the history of the differential 
and integral calculus. We will see that it was the starting point for all mathemati- 
cians up to Bombelli and Vikte, and that its importance for number theory and for 
indeterminate equations can be traced up to the present. 

4. ALGEBRA AFTER DIOPHANTUS. The period from the 4th to the 6th cen- 
turies AD was marked by the precipitous decline of ancient society and learning. 
But eminent commentators, such as Theon of Alexandria (second half of the 4th 
century) and his daughter Hypatia (murdered in 418 by a fanatical Christian mob), 
were still active. In the 5th century there was an exodus of scholars from 
Alexandria to Athens. Finally, in the 6th century, Eutocius and Simplicius, the last 
of the great commentators, were expelled from Athens and settled in Persia. 

We can turn to the question of the Arabic translations of four books attributed 
to Diophantus. An analysis of these books, translated at the end of the 9th century 
from Greek to Arabic by Costa ibn Luca (i.e., the Greek Constantin, son of Luca) 
shows that they are a reworked version of Diophantus' Arithmetica. They contain 
problems, possibly due to Diophantus, as well as extensive additions and commen- 
taries to them. According to Suidas' Byzantine dictionary, Hypatia wrote commen- 
taries on Arithmetica. It is therefore very likely that the four books translated into 
Arabic are books edited and provided with commentaries by Hypatia. These books 
contain no new methods, but the material is presented in a complete and 
systematic manner. Their author went beyond Diophantus by introducing the 8th 
and 9th powers of the unknown. 

The subsequent development of mathematics, including that of algebra, was 
connected with the Arabic East. Scholars from Syria, Egypt, Persia, and other 
regions conquered by the Arabs wrote scientific treatises in Arabic. 
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