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The Area of the Medial 

Parallelogram of a Tetrahedron 


David N. Yetter 

The midpoints of any four edges of a Euclidean tetrahedron that form a cycle are 
coplanar, and are the vertices of a parallelogram. The purpose of this note is to 
derive a simple formula for the area of this medialparallelogram of a tetrahedron 
in terms of the lengths of the six edges. It would appear that this result is either 
new or long-forgotten. 

Despite the very classical nature of the problem our formula solves, there is 
some serious contemporary interest arising from recently proposed simplicia1 
models for quantum gravity, in which such a formula is needed to approach the 
problem of length operators; see [I], [2]. 

Consider a tetrahedron with edge-lengths as in Figure 1. Fix a pair of non- 
incident edges, say those of lengths e and f .  It is then easy to see that the 
midpoints of the remaining four edges lie in a plane parallel to both of the chosen 
edges, and equidistant from the planes containing each chosen edge and parallel to 
both, and that they form the vertices of a parallelogram in this plane. 

Figure 1. A generic tetrahedron 

Definition 1. Given a pair of non-incident edges in a tetrahedron, the medial 
parallelogram determined by the pair is the parallelogram whose vertices are the 
midpoints of the remaining four edges. 

Our main result is 

Theorem 2. The area of the medialparallelogram determined by the edges of lengths e 
and f in the tetrahedron of Figure I is 
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Proof The key is to consider the vertices of the tetrahedron as vectors 23, 2q', 2< 
and 2s'in R3.The factors of 2 in the vertices given as vectors are included to avoid 
fractions; see Figure 2. 

Figure 2. Tetrahedron with vertices as vectors 

The vertices of the medial parallelogram are then given by the vectors p' + q', 
q'+ 7', 7'+ and s'+ 3.The lengths of the six edges are given in terms of the six 
vectors by 

d = 21s'-3), e = 2 1 ~ - 3 ) ,  f = 2)s'- q'). 

The medial tetrahedon is then spanned by the vectors u' = 7'- p' and i7 = s'- q'; 
see Figure 3. 

a + ;  7- p' ;+ r' 

Figure 3. The medial tetrahedron in terms of vectors 

The area of the medial tetrahedron is thus lu' X GI. 
Now, recall that since sin2 0 = 1 - cos2 0, the vector (cross) and scalar (dot) 

products of an two vectors x' and y' in R3 are related by 
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thus, in our case we have 

1 
= -[4e2f - ( a 2- b2 + c2 - d ~ ) ~ ]

64 
Thus, taking square roots, we have the desired result. 
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