

10773

Jean Anglesio

The American Mathematical Monthly, Vol. 106, No. 10. (Dec., 1999), p. 964.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28199912%29106%3A10%3C964%3A1%3E2.0.CO%3B2-M

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <u>http://www.jstor.org/journals/maa.html</u>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

10773. Proposed by Jean Anglesio, Garches, France. Let a_0, a_1, \ldots, a_k be positive integers. For $0 \le i \le k$, let p_i/q_i be the fraction in lowest terms with continued fraction expansion $[a_0, a_1, \ldots, a_i]$. Find the continued fraction expansions of

$$\sqrt{\frac{p_k p_{k-1}}{q_k q_{k-1}}}, \sqrt{\frac{p_k q_k}{p_{k-1} q_{k-1}}}, \sqrt{\frac{p_k^2 + p_{k-1}^2}{q_k^2 + q_{k-1}^2}}, \text{ and } \sqrt{\frac{p_k^2 + q_k^2}{p_{k-1}^2 + q_{k-1}^2}}$$

in terms of a_0, a_1, \ldots, a_k .

SOLUTIONS

Tracking the Incenters

10631 [1997, 975]. Proposed by Greg Huber, University of Chicago, Chicago, IL. Given a triangle T, let the *intriangle* of T be the triangle whose vertices are the points where the circle inscribed in T touches T. Given a triangle T_0 , form a sequence of triangles T_0, T_1, T_2, \ldots in which each T_{n+1} is the intriangle of T_n . Let d_n be the distance between the incenters of T_n and T_{n+1} . Find $\lim_{n\to\infty} d_{n+1}/d_n$ when T_0 is not equilateral.

Solution by the GCHQ Problems Group, Cheltenham, U. K. We show that $d_{n+1}/d_n \rightarrow 1/4$. Let A, B, C be the angles of a triangle, r its inradius, R its circumradius, and d the distance from its incenter to its circumcenter. Then

$$d^2 = R^2 - 2Rr \tag{1}$$

and

$$r = 4R\sin(A/2)\sin(B/2)\sin(C/2).$$
 (2)

(H. S. M. Coxeter and S. L. Greitzer, *Geometry Revisited*, MAA, 1967). Now let A', B', C' be the angles of the intriangle of ABC (with A' on side BC, etc.). Then $A' = \pi/2 - A/2$, so

$$A' - \pi/3 = (-1/2)(A - \pi/3), \tag{3}$$

and similarly for B' and C'. From (3) we infer that triangle T_n approaches equilateral as $n \to \infty$. For the triangle T_n , with angles A_n , B_n , C_n , define $a_n = A_n - \pi/3$, $b_n = B_n - \pi/3$, $c_n = C_n - \pi/3$, and $S_n = a_n^2 + b_n^2 + c_n^2$. Then (3) implies that $S_{n+1}/S_n = 1/4$. Also, $a_n + b_n + c_n = 0$, so $(a_n + b_n + c_n)^2 = 0$, and therefore

$$S_n = -2(a_n b_n + b_n c_n + c_n a_n).$$
 (4)

Now define $U_n = 1 - 8 \sin(A_n/2) \sin(B_n/2) \sin(C_n/2)$. Using (1) and (2) and observing that $R_{n+1} = r_n$, we obtain

$$\left(\frac{d_{n+1}}{d_n}\right)^2 = \frac{R_{n+1}^2}{R_n^2} \frac{U_{n+1}}{U_n} = 16\sin^2(A_n/2)\sin^2(B_n/2)\sin^2(C_n/2)\frac{U_{n+1}}{U_n}.$$
 (5)

Note that

$$2\sin(A_n/2) = 2\sin(a_n/2 + \pi/6) = \sqrt{3}\sin(a_n/2) + \cos(a_n/2)$$
$$= 1 + \frac{\sqrt{3}}{2}a_n - \frac{1}{8}a_n^2 + O(a_n^3).$$

Therefore

$$U_n = 1 - \left(1 + \frac{\sqrt{3}}{2}a_n - \frac{1}{8}a_n^2 + \cdots\right) \left(1 + \frac{\sqrt{3}}{2}b_n - \frac{1}{8}b_n^2 + \cdots\right) \left(1 + \frac{\sqrt{3}}{2}c_n - \frac{1}{8}c_n^2 + \cdots\right)$$

= $\frac{1}{8}S_n - \frac{3}{4}(a_nb_n + b_nc_n + c_na_n) + \text{ terms of degree 3 or higher}$
= $\frac{1}{2}S_n + \text{ terms of degree 3 or higher,}$

PROBLEMS AND SOLUTIONS

[Monthly 106