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10773. Proposed by Jean Anglesio, Garches, France. Let ao, a 1 ,  . . . , ak be positive integers. 
For 0 5 i 5 k,  let pi/qi be the fraction in lowest terms with continued fraction expansion 
[ao, a l ,  . . . , ai l .  Find the continued fraction expansions of 

in terms of ao,  a l ,  . . . , ak. 

SOLUTIONS 

Tracking the Incenters 

10631 [1997,975]. Proposed by Greg Hubel; University of Chicago, Chicago, IL. Given a 
triangle T ,  let the intriangle of T be the triangle whose vertices are the points where the circle 
inscribed in T touches T. Given a triangle To, form a sequence of triangles To, TI,  T2, . . . 
in which each T,+1 is the intriangle of T,. Let d, be the distance between the incenters of 
T, and T,+l. Find lim,,, d,+l/dn when To is not equilateral. 

Solution by the GCHQ Problems Group, Cheltenham, U. K. We show that d,+ 1Id, +-114. 
Let A, B, C be the angles of a triangle, r its inradius, R its circumradius, and d the distance 
from its incenter to its circumcenter. Then 

d2 = R2 - 2Rr (1) 

and 
r = 4R sin(A/2) sin(B/2) sin(C/2). (2) 

(H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967). Now let A', B', C' 
be the angles of the intriangle of ABC (with A' on side BC, etc.). Then A' = n / 2  - A/2, 
SO 

A' - n / 3  = (-1/2)(A - n/3), (3) 
and similarly for B' and C'. From (3) we infer that triangle T, approaches equilateral as 
n +- co.For the triangle T,, with angles A,, B,, , C, , define a, = A, -n/3,  b, = B, -n/3,  
c, = C, - n/3,  and S, = a: + bi + c:. Then (3) implies that /S, = 114. Also, 
a, + b, +c,  = 0 ,  so (a, + b, + c , ) ~  = 0 ,  andtherefore 

Sn = -2(a, bn + bn cn + c,a,). (4) 
Now define U, = 1 - 8 sin(A,/2) sin(B,/2) sin(C,/2). Using (1) and (2) and observing 
that R,+l = r,, we obtain 

Note that 

2 sin(A,/2) = 2 sin(a,/2 + 7716) = h sin(a,/2) + cos(a,/2) 

Therefore 

1 3 

= -8 Sn - 4(anbn + bncn + cna,) + terms of degree 3 or higher 


= -
1 

S, + terms of degree 3 or higher, 
2 
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