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10773. Proposed by Jean Anglesio, Garches, France. Letay, ay, . . ., aj be positive integers.
For 0 < i <k, let p;/q; be the fraction in lowest terms with continued fraction expansion

[ag, a1, ..., a;]. Find the continued fraction expansions of
\/pkpk_l \/ P 9k \/P/%+P/3-1 an Pk +4i
wait N g V@2 +ai N P +ar
in terms of ag, ay, . .., ak.
SOLUTIONS
Tracking the Incenters

10631 [1997, 975]. Proposed by Greg Huber, University of Chicago, Chicago, IL. Given a
triangle T, let the intriangle of T be the triangle whose vertices are the points where the circle
inscribed in T touches T'. Given a triangle Ty, form a sequence of triangles Ty, T1, T2, . ..
in which each T}, is the intriangle of 7,,. Let d,, be the distance between the incenters of
T, and T,,41. Find lim,_, o dy+1/d, when Tj is not equilateral.

Solution by the GCHQ Problems Group, Cheltenham, U. K. We show that d,, 1| /d, — 1/4.
Let A, B, C be the angles of a triangle, r its inradius, R its circumradius, and d the distance
from its incenter to its circumcenter. Then
d*> = R> - 2Rr 1)
and .
r = 4Rsin(A/2)sin(B/2) sin(C/2). 2)
(H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967). Now let A’, B’, C’
be the angles of the intriangle of ABC (with A’ on side BC, etc.). Then A’ = 7/2 — A/2,
S0
A —7/3=(-1/2)(A - 7/3), 3
and similarly for B’ and C’. From (3) we infer that triangle T,, approaches equilateral as
n — oo. Forthe triangle T,,, with angles A,,, B,,, C,,,definea, = A,—=n/3,b, = B,—7n/3,
cn = Cn — /3, and S, = a? + b2 + c2. Then (3) implies that S,4+1/S, = 1/4. Also,
a, + b, +c, =0,s0 (an, + b, + c,l)2 = 0, and therefore
Sn = —2(anbn + bpcn + cnan). “@

Now define U, = 1 — 8sin(A,/2) sin(B,/2)sin(C,/2). Using (1) and (2) and observing
that R+ = r,, we obtain

dp1\> R2, U , , , U,
( ;:') = ;}‘ (”]:‘ = 165in%(A,/2) sin?(B,/2) 51n2(§n /2) ("J:‘ 5)
Note that ,
2sin(A,/2) = 2sin(a, /2 + 7 /6) = V3 sin(a, /2) + cos(a, /2)
V3 1
=1 +——2—a,, - gd%-‘- 0((13)
Therefore
V3 1 NE] 1 V3 1
U,,=1—<1+——2—a,,—§a,2,+ 1+7bn—§bn+ 1+—2—Cn—§C5+
1. 3 _ ‘
=3 Sy — Z(a,,b,, + bncn + cnan) + terms of degree 3 or higher

1
=3 Sy + terms of degree 3 or higher,
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