
Emerging Tools for Experimental Mathematics

Jonathan M. Borwein; Robert M. Corless

The American Mathematical Monthly, Vol. 106, No. 10. (Dec., 1999), pp. 889-909.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28199912%29106%3A10%3C889%3AETFEM%3E2.0.CO%3B2-0

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sat Dec 22 05:42:38 2007

http://links.jstor.org/sici?sici=0002-9890%28199912%29106%3A10%3C889%3AETFEM%3E2.0.CO%3B2-0
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html


Emerging Tools for Experimental 

Mathematics 


Jonathan M. Bonvein and Robert M. Corless 

1. INTRODUCTION AND WARM-UP 

If I can give an abstract proof of something, I'm reasonably happy. But if I 
can get a concrete, computational proof and actually produce numbers I'm 
much happier. I'm rather an addict of doing things on the computer, because 
that gives you an explicit criterion of what's going on. I have a visual way of 
thinking, and I'm happy if I can see a picture of what I'm working with. 

-John Milnor [26,p. 781 

Using mostly elementary examples, we discuss the use of some recent and 
emerging tools for experimental mathematics. The tools discussed include so-called 
"inverse symbolic computation", using lattice reduction algorithms such as "LLL" 
and "PSLQ," and Sloane and Plouffe's integer sequence lookup program. We 
concentrate on computer-assisted discovery of mathematical results, but a little 
computer-assisted proof creeps in as well. We use MAPLEthroughout the paper, 
but any other good computer algebra system would be as effective. 

This paper is not a tutorial on how lattice basis reduction algorithms such as 
LLL or PSLQ actually work; rather, we discuss some of the ways these tools can be 
used to generate conjectures, and for that, a detailed understanding of the 
underlying algorithms is not necessary. We do hope, however, to convey some 
appreciation of their power. 

We begin with some warm-up examples, using the Inverse Symbolic Calculator 
(ISC); http://www.cecm.sfu.ca/MRG/INTERFACES.html. The basic idea is sim- 
ple: given the first few decimal digits of some real number, we want the ISC to 
guess a formula for what it 'really' is. 

For example, if we input K ,  = 3.14626436994198, and click on simple lookup 
(the default) and Run, the ISC tells us that 

. . . 
3146264369941972 = ( 0 4 0 5 )  1/ abs ( - sr ( 3 )  + sr ( 2 )  j 
Your value of 314626436994198 would be here. 
3146264469611207 = ( 0 1 9 2 )  (5"  (1/ 2 )  + 4 )  / ( e x p ( l l 2 )  + 1/ 3 )  . . . 
This has correctly identified K ,  as 1 / ( 6  -6)= 6 +6,by table lookup. 
Using the integer relation option would get us, instead, the error message 
that we need at least 16 digits, and then when we change the final 8 to 72, the 
following answer appears: 

K=3.146264369941972  gave the following results: 

K satisfies the following polynomial, 1- lox2+x4 
together with some negative results about combinations of other constants. 
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Now consider a second warm-up. If we input the number K,, computed from 
the infinite product 

then the simple lookup fails to tell us anything; the integer relations 
option tells us that it is not a simple combination of a few specific constants; but 
the smart lookup tells us that K2/2 = .ir/(exp(- .ir) - exp(.ir)). This is actually 
wrong-it's got the wrong sign, possibly because signs are ignored in this version of 
the ISC (of course, the program is continually being improved)-but the digits are 
correctly identified. K, is indeed equal to .ir/sinh(.ir). 

As a final warm-up, consider the following two infinite products: 

, \ 2  

Simple lookup, smart lookup, and integer relations as embodied in the ISC all fail 
to tell us anything about these numbers. In fact, K, is 

but this is a strange enough formula that we aren't surprised that the ISC can't 
identify it. We do not know any closed form expression for K,, however. 

The generalized expansions option guesses that there is a simple generat- 
ing function for the 'egyptian fraction' of K;', namely 

but this is incorrect, and it is easy to disprove this conjecture by computing the 
series expansion 

and evaluating the rational number that is the 'egyptian fraction' defined by the 
coefficients of the series (1): 

whereas K;' = 0.5408515498. . . , which differs from 311/575 after the fourth 
decimal place. Similarly, the ISC's generalized expansions return an incorrect 
egyptian fraction for KT'. Again, note that the ISC is evolving; but some such 
failures must always be present-its guesses cannot always be correct. 
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An 'egyptian fraction' is just an ordinary rational written as a sum of reciprocals 
of natural numbers without repeated entries in the sum. 

So, we have seen examples where the ISC tells us something useful, tells us 
something incorrect, and tells us nothing. 

The tools discussed in this paper are only the beginning. The merging of text and 
tools that can be anticipated over the next few years will make an enormous 
difference-we can expect greater insight while reading mathematical materials, 
and easier access to yet more powerful tools-but we make no detailed predic- 
tions, because the most significant, qualitative, changes to the work environment 
are by their nature unexpected. Cases in point are provided by the experiences of 
the community with MathSci, and with Local Area Networks. 

2. A CONNECTION BETWEEN THE LAMBERT W FUNCTION AND STIRL-
ING'S FORMULA FOR n! We now look at a more interesting example, using 
the online version of the Encyclopedia of Integer Sequences [28] (http://www. 
research.att.com/ - njas/sequences/). 

The Lambert W function satisfies 

See [14] for a survey of properties and applications of W, together with some of its 
history; [16] explores various series for W, including the one we discuss in this 
section. We give a short introduction to this function in Appendix A. 

There is a branch point of W at x = - l /e,  where W(x) = -1. See Figure 1, a 
version of which can be produced in MAPLE by the command 

> plot ( [t*exp(t),t, t = -5. .I],- 1. .3,- 4..1); 

# - 4  

Figure 1. The real branches of the function W(x) that satisfies W e x pW = x. 
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The two real-valued branches of W are denoted W,(x) and W-,(x); we also refer 
to W,(x) as the principal branch. We wish to know more about the function near 
the branch point at x = - l /e .  After various experiments, we decide to compute 
the series of 

in MAPLE. We get, very quickly, that 

As our first real example of using a new tool, we look up the sequence of 
denominators 1, 3, 36, 270, 4320, . . . , in [28]. We find the sequence immediately, 
and the Encyclopedia gives a reference to the delightful paper 1231, which does not 
mention W or refer to any papers on W, or indeed even use it explicitly. Thus, [231 
would not easily be found by a normal citation search. We find out in [23] that 
equation (4) gives coefficients needed in Stirling's formula for n!, which begins 

The connection we discover (without doing any work ourselves) is that if 

then 

and moreover there is a lovely (and useful!) recurrence relation for the ak7s, 
namely a, = 1, a, = 1, and 

3. RIEMANN SURFACES. Tools such as MATLAB and MAPLE permit easy and 
accurate visualization of Riemann surfaces for elementary functions [Is], [29]. Our 
qualitative understanding of even extremely basic mathematical building blocks 
can thus be affected by mathematical software tools. See [ I l l  for more discussion 
of visualization in general; here we concentrate on a simple technique for visual- 
ization of Riemann surfaces, namely to make 3-d plots of %f (z )  or 3f(z). 

It is necessary to prove something about this technique-namely, that it really 
gives us a good picture of the Riemann surface and not just a 3-d plot of the 
imaginary part (or the real part) of the function involved. This is pursued in more 
detail in [Is], but the key point is that given w = u + iu = f (z )  = f (x  + iy), then 
we get an accurate Riemann surface by plotting, say, (x, y, u) if and only if the 
missing piece of information (here, u )  is completely determined once x, y, and u 
are given. This is simple, if not quite obvious: once we have a smooth three-dimen- 
sional surface, each point of which can be associated with a unique value (i.e., 
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ordered pair) of the map z -,w = f(z), then we have a representation of the 
Riemann surface of f .  

This exact association is not automatic. For example, if w = ln(z) and we plot 
(x, y, u), then we do not get a picture of the Riemann surface for logarithm, 
because the branch of u = 5 (w) = arg(z) is not determined from u = 

ln(x2 + y2)/2, x, and y. If we plot (x, y, u), of course, we do recover the classical 
picture of the Riemann surface for ln(z), because given x, y, and u we can easily 
find u. 

The following short piece of MAPLE code shows how to graph the Riemann 
surface for the Lambert W function. We urge you to try the following computa- 
tion, because the dynamic coloured picture you get is much more easily understood 
than the static black-and-white image in Figure 2. We also urge you to try your 
hand at your own functions; many others are graphed in [IS]and [29]. 

w := u + I u  

> z := w*exp(w); 

> evalc ( z ); 

ue" cos(u) - ue" sin(u) + I(ueU cos(u) + ue" sin(u)) 

> x := evalc (Re (z) ) ; 

> y := evalc (Im(z) ) ; 

Figure 2. The Riemann surface for the Larnbert W function. 

December 19991 EMERGING TOOLS 



> plot3d([x,y,v], u = - 6 .  .l, 

v=-5..5, axes=FRAME, 

orientation = [ - 110,731 , 

labels = [ "x ", "y ", ' 'v "1 , 

style = PATCHNOGRID, 

colour = u, 

view= [-l..l,-1..1,-5..5], 

grid= [50,501) ; 


3.1 One-to-one correspondence proof. Given x, y, and v, we have to solve for u. 
Of course, one takes the existence of (u, u) for a given (x, y) for granted here; for 
the Lambert W function, a proof can be found in 1141. We have 

( u  + iu)eU+'"= x + iy, 

which gives 

ue" + ive" = ( x  + iy)e-'" = ( x  + iy)(cos u - i sin u); 

therefore, 

ueU+ iveU= ( x  cos u + y sin v) + i (y  cos v - x sin u). 

If v # 0, and moreover y cos u - x sin v # 0, then dividing the real part by the 
imaginary part gives u in terms of x, y, and v: 

v( x cos u + y sin u) 
U = ' 

y cos u - x sin u 

This solution is unique. Investigation of the exceptional conditions u = 0 or 
y cos u - x sin u = 0 leads to u exp u = x, which has two solutions if and only if 
- l /e  5 x < 0, in the case u = 0, and to the singular condition u = -co and 

x = y  =O. 
This is precisely what we observe in the graph: two sheets intersect only if 

- l /e  Ix < 0 (note that the colours are different and hence the corresponding 
sheets on the Riemann surface do not really intersect), and all sheets have a 
singularity at the origin, except the central one, which contains u = 0. This is as 
good a representation of the Riemann surface for the Lambert W function as can 
be produced in three dimensions. 

However, Figure 2 is nowhere near as intelligible as the live MAPLE plot. On a 
PC, the use of OpenGL by MAPLEallows the plot to be rotated by direct mouse 
control. This helps to give a good sense of what the surface is really like, in three 
dimensions. 

4. DYNAMICAT.. SYSTEMS, NUMERICAL ANALYSIS, AND FORMAL POWER 
SERIES. In this section we give a brief overview of a surprising connection 
between numerical analysis of dynamical systems and formal power series. We 
begin with a simple question: what, exactly, does the fixed time step forward Euler 
numerical method do to the solution of the simple initial value problem 

with y(0) = yo? The numerical procedure is just 

for integer n 2 0, where yl, = y; and h > 0 is the chosen time step. 
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It turns out to be useful to rescale y and t so that u = hy and T = ht, giving 

and (6) becomes 

We may then rephrase our question to ask instead what the relationship between 
v, and U(T) is. 

The point of view taken in 1131 is that of backward error analysis. That is, instead 
of asking for the difference between u(n) and u,, we ask instead if there is another 
differential equation, say 

whose solution interpolates v,. That is, we impose the conditions w(0) = u, and 
W(T+ 1) = W(T)+ w ( T ) ~(cf. (8)), and see if we can find such a function B(w). 

We do this not so we can improve the behaviour of Euler's method for this 
problem, but rather so that we may understand what Euler's method has done to 
the problem; for by understanding the function B(w) we learn something about 
Euler's method, by comparing (7) to (9). 

It turns out that we can use the method of modified equations [19] to find as many 
terms of the Taylor series for B(w) as we desire. When we compute the modified 
equation for (5) to (say) fifth order, we get 

Now we see the sequence 1, -1,3, - 16,124, -1256 appearing. This is sequence 
M3024 in [28], which points us directly to the very beautiful and useful paper [21]. 

We find in that paper that if 

then 

and this, combined with the functional equation 

(which can be iterated to give us two converging infinite products for B), allows us 
to write an efficient program to evaluate B(w). We can show that B(w) has a pole 
at w = -1/2. By mapping backwards, solving w + w2 = - 1/2, we find two more 
(complex) poles. Iterating this process finds an infinite number of complex poles, 
approaching the Julia set for the map v + v + v2 arbitrarily closely; see Figure 3. 

The Julia set itself approaches the origin arbitrarily closely. That is, there are 
poles arbitrarily close to the point of expansion of the series given for B. Thus the 
series (11) diverges-but, nonetheless, it can be used to evaluate B(w) for w close 
enough to zero, using MAPLE'S built-in sequence acceleration techniques. This is 
precisely where the convergent infinite products are slow, and hence the series is 
useful. See [I31 for details. 
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Figure 3. The first 16000 poles of B(u), approaching the Julia set of u + u + u2. 

But more to the point, in [21], G. Labelle completely solves the problem of 
interpolating discrete dynamical systems with continuous dynamical systems, in the 
domain of formal power series. The mathematical language, however, is quite 
different from that used in the numerical analysis world. As an example, in [21] the 
'modified equation' is termed an 'infinitesimal generator' for the discrete dynami- 
cal system. Therefore, simple subject searches might not find [21]. Indeed, a 
combinatorics journal seems an unlikely place to find the solution of a problem in 
the numerical analysis of dynamical systems, but the Encyclopedia of Integer 
Sequences provides a way to search the 'knowledge database' that is keyed on the 
examples, or the concrete results, of papers-not the jargon. This, if you like, is a 
new kind of search tool. 

5. AN INTEGER-RELATION EXAMPLE. The following is taken from [lo]. As a 
didactic example, suppose that we are interested in finding the value of the 
definite integral 

&in5 

v = i ( l - $  k ,  (12) 

and that we suspect that V could be expressed as a polynomial in r 2 ,  of low 
degree, with short rational coefficients. 

Such a conjecture might arise naturally from consideration of 
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for example, and we may suppose that these values are known already, for the sake 
of argument. One can use the mellin routine of the inttrans package in 
MAPLE to evaluate all these (and V )  symbolically-so this example is really just 
expository. 

To be explicit, we conjecture that 

where all the ri are short rational numbers. Instead of trying to derive the 
coefficients of the this polynomial analytically, we can use numerical approxima- 
tion and a lattice basis reduction algorithm, the LLL algorithm given in [22], to 
identify the coefficients heuristically. In an ideal world, we would then know what 
we had to prove, and, knowing that, would find the proof easier. 

We give a short overview of using the LLL algorithm to find integer relations. 
Suppose that we have a finite set B of n-dimensional linearly independent vectors 
with rational entries. We call the set 

"the lattice spanned by B." We say that the lattice has dimension n, and that B is 
a basis for the lattice. There may be many other bases for the lattice, and we often 
want to find particular bases with nice properties. For many applications, and in 
particular for finding integer relations, what we would really like to have is "the 
basis with the shortest Euclidean length." Unfortunately, the problem of determin- 
ing whether one has the shortest basis may be NP-complete [22]. But finding a short 
basis is often just as helpful, and the LLL algorithm [22] can, in polynomial time, 
find relatively short vectors; guaranteed, in fact, to be of length at most 2n-11, 
where 1 the shortest possible. In practice the LLL algorithm often returns vectors 
much better than this bound. 

To proceed in MAPLE, we choose a large constant C and form the following 
matrix, and use the lattice reduction subroutine. 

> readlib( lattice ; 

proc () . . . end 

We work to 30 digits for this example. In general, one has to experiment to find 
how many digits one needs. 

> Digits := 30; 


Digits := 30 


We compute an approximation for the value V that we wish to identify, and 
approximations of the quantities that we wish to relate to V. 

> V := Int ( sqrt (x) *ln (x) ^ 5  / (1-X)^ 5 ,  x = 0. .infinity) ; 
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> lastcol := [ seq( evalf ( pi" (2*i) ) , i = 0..4 ) , evalf (V)1 ; 

lastcol := [1.,9.86960440108935861883449099988, 

97.4090910340024372364403326888,961.389193575304437030219443653, 

9488.53101607057400712857550392, -16.6994737192290704961872434007] 

We now choose a large constant C. We use the size of C to penalize vectors 
that do not combine to zero. 

We construct the rows of the matrix that we need, as follows. 

> for i to 6 do 

> row.i*j:[ seq(0, j =1..7) 1 :  

> row.i[i]:=l: 

> row. i [7] := C* lastcol [i] : 

> od: 

> B:= [ seq( row.i, i=1..6 ) I ;  


[0, 0, 1, 0, 0, 0, .9740909103400243723644033268881017 1, 


[O, 0, 0 ,1 ,0 ,0 ,  .961389193575304437030219443653 


[0, 0, 0, 0 ,1 ,0 ,  .948853101607057400712857550392lo1'] , 


[0, 0, 0, 0, 0 ,1,  - .1669947371922907049618724340071017I] 

Now we call the lattice routine to compute a short basis for the set 

generated by these rows. 

All of these new basis vectors are of the form 

where the ri are integers. This is because each new vector is an integer linear 
combination of rows of the initial matrix. Because the initial matrix was an 
augmented identity matrix, the coefficients of the requisite integer combination 
show up in the result. Because we chose C to be so large, looking for a short vector 
in this space really biases the search towards places where the integer linear 
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combination of the final column is zero, if there are any. Hence we suspect, from 
the first row of (13), that 

Issuing the following MAPLEcommand lends credence to our suspicion. 

> evalf ( V- 5 / 24*piA2* (3*p iA4-  28*piA2-  2 4 ) ,  1 0 0 )  ; 

There is a simpler Web-based implementation, which uses the "EZface" to 
emulate a more comprehensive GNU MP implementation of this method. Go to 
http://www.cecm.sfu.ca/MRG/INTERFACES.html, click on EZface, and type 
in the following: 

l i n d e p  ( [ l . ,  
9.86960440108935861883449099988, 
97.4090910340024372364403326888, 
961.389193575304437030219443653, 
9488.53101607057400712857550392, 
-16.6994737192290704961872434007]) 

Then, select 30 digits of precision, and click e v a l u a t e .  Very quickly, the vector 

is returned-voilA, our integer relation. 
Issuing the command l i n d e p  calls a subroutine that looks for short integer 

linear dependencies among the given vector of numbers. Again its results are to be 
considered as possible relations, to be proved later. 

Numerical instability in the LLL algorithm may cause difficulty, as well. Here 
we have simply worked to enough digits to mitigate its effects-that is, we are 
trying to buy more accuracy by paying for more precision. This is often expensive, 
and PSLQ, discussed in Section 6.1, is better, being more stable and hence faster 
and more reliable. 

However, the simple LLL approach is still very powerful and, if used with 
imagination, offers rich possibilities for discovery. 

6. HOW SOLVABLE IS 'SOLVABLE'? This example is also t'aken from [lo]. The 
following problem arises when thinking about modular (theta) functions; see [6]. If 
we define 

where w = exp(2.rri/3I7 then we have 
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and a lovely parameterization of the ,Fl hypergeometric function [4]: 

Choosing q = exp( -2.rrm) for N E Q,it can be shown that s, := c/a is an 
algebraic number expressible by radicals; see [6]. If N is a positive integer, then s, 
is called the Nth cubic singular value. What can we discover computationally about 
s,? For example, can we determine radical formulae for the higher order cubic 
singular values? 

The following observations help the efficiency of the computations. It is known 
that 

a ( q )  = 03(q)0,(q3) + 0,(q)0,(q3) 

b(q)  = (3a(q3) - a (q ) ) /2  

where 

0,(q) = q ( n + 1 / 2 ) 2  and B3(q) = q n 2  

~ E Z  n t Z  

are the classical theta functions. The lacunarity of these series allows for very rapid 
computation. 

6.1 A useful transformation. A further transformation, which makes the as yet 
unknown minimal polynomial simpler, is useful. After examining the patterns in 
the first few cases s,, s,, s,, . . . , and using the analogous classical quadratic 
singular values (where one sees the forms 4k i (1  - k i )  or (1 - k i ) /2kN depend- 
ing on the parity of N), the authors of [lo] thought to look at 

the minimal polynomial for G, or g, then, by observation, has lower degree than 
the minimum polynomial for s,. This makes the polynomial easier to find by the 
PSLQ algorithm. 

The PSLQ algorithm (see [17]) and the LLL algorithm can both be used to find 
integer relations (and hence minimal polynomials for an algebraic number a ,  by 
looking for an integer relation among l , a ,  . . ., an'). However, PSLQ can also 

' produce negative results. If PSLQ fails to find an integer relation, then one can 
usually say that there is no such relation with coefficients less than a computable 
bound, effectively proving that there is no simple relation of the guessed form. 

The authors of [lo] used these ideas to 'decode' the numerical values of s, into 
radical form, up to N = 100, and some values beyond, such as N = 110 and 154. 
They used a variety of strategies to verify the results; some ingenuity was necessary 
in order to extract the radicals. For N < 53, they computed P,, the minimal 
polynomial for G, or g,; they then tried factoring P, over different quadratic 
number fields until they got a factor of degree 4 or less, which they solved in 
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radicals. This approach failed at N = 53, where they first had to use a special 
MAPLE program for finding a radical for any solvable quintic. (See 
ftp://calfor.lip6.fr:/pub/softwares/Maple/quinticV2.gz.) The radical returned 
for N = 53 has over 7500 symbols in it. Kevin Hare at the CECM refined it to an 
equivalent but simpler radical with 'only' 860 symbols. MAPLE was able to verify 
symbolically that this simpler radical solved P,,. In general, determining that a 
symbolic equation is indeed zero is, in certain classes of expressions, computation- 
ally undecidable [27]. 

Indeed, the point of this whole exercise was to determine how good both 
MAPLE'S symbolic tools and PSLQ's numerical ones were on "grand challenge" 
examples. Experience with exercises such as this have led to improvements in both 
tools. 

Reassurance that the results are correct can often be obtained by using Klein's 
absolute invariant [3, p. 11-51 

and its cubic counterpart 

If our computed s, is correct, then it is related to the (known) classical singular 
value k,, by 

J2(k3N) = J3(sN). ( I4)  

The identity (14) can be derived from Proposition 5.8 in [3, p. 185, (5.5.2611. It can 
be checked symbolically in MAPLE for the radicals arising in the cases N 5 10. For 
larger N, some human intervention is required. For N = 70, the verification 
requires use of k,,,, the computation of which Hardy called "one of the most 
striking of Ramanujan's results" [20, p. 2291. We note that purely numerical 
computation, together with analytic reasoning about such computation (some of 
which is automatable) can be used to verify the results. Standard irrational number 
theoretic techniques allow one to show that either J2(k2,,) = J,(S) or lJ,(k,,,) -

J,(S)J > where S is our heuristically guessed radical formula for s,,. 
Given this knowledge, a few minutes of CPU time establishes that IJ2(k2,,) -
J,(S)l < and thus J2(k2,,) = J,(S). 

7. FINAL VIGNETTES. Integer relation algorithms have already helped to dis- 
cover many new results. We list a few of these, again taken from [lo]. The number 
of such results continues to climb. We have to tell the algorithms what kind of 
relationship to look for, but, given that, the algorithms allow previously impossible 
jumps. 

7.1 Zeta value series. The formula for l(3) used by Ap6ry to prove that l(3) is 
irrational, namely 

has no analog for l (2n  + 1) with n 2 2; it is not yet known if these l values are 
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irrational. It can be shown using PSLQ (or more simply in this case by the 
Euclidean algorithm, since there are only two unknown integers) that if a formula 
like 

exists, then the integers p and q are larger than 10300. 
There is a similar but more complicated formula for [(5), due to Koecher, that 

does suggest generalization, however. Bonvein and Bradley used an LLL algorithm 
to determine the new coefficients [7]. They found that 

and they discovered similar formulas for 5(4n + 3) for 2 I n I 10 that involve 
linear combinations of sums of the form 

/ L l \ k + l  k - l  1 

and multiple dimensional analogues. They conjectured the following generating 
function: 

where the final infinite sum is quite unexpected. However, from the first ten cases 
it was apparent that the series had the form 

for as yet undetermined P,; and there were abundant data to compute 

They reduced the conjectured formula to an equivalent finite sum 

k2 k - l  n 4  - j 4  1 
= -

4n4 + k 4  j = l
n 4n4 + j4 n2k = l  

(1 I n < m) that was subsequently proved by Almkvist and Granville [I]. Series 
expansion of the finite products in (15) gives a rapidly converging series for any 
[(4n + 3). The original motivation for the search for these formulae was the hope 
that they would shed light on whether these [ values are irrational. 
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7.2 Independent computation of digits of n. The following formula, discovered 
using the PSLQ algorithm, allows rapid computation of hexadecimal digits of .rr 

independently of previous digits [2]: 

Bailey, Bonvein, and Plouffe knew that a fast algorithm would result from a 
formula of this form, and deliberately used a computer search to find it; some have 
called this approach mathematical reverse engineering. Once known, the formula 
can be proved very concisely by a human [2]. Interestingly, the following MAPLE 
session shows that it can now be proved almost automatically, too. 

The following shows a temporary increase in complexity. This phenomenon is 
called "intermediate expression swell." 

> value ( p ) ; 

Looking at those conjugate radicals in the denominators suggests expansion- 
this step is natural but not automatic. 

> normal ( % , expanded ) ; 
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As an aside, equation (18) is an interesting identity itself. In the notation of [18], it 
implies (once the proof is completed) that 

The next step in the mechanical proof of the Bailey-Bonvein-Plouffe r formula 
simplifies the hypergeometric functions: 

+ Aarctan(  1) - 2arctan i:A 1 + -:A l n  i:)- + Aarctan [ ) ) 

The next step is not necessary, but it slows down the computation so we can see 
that many of the terms in the above formula simply cancel. 

> expand ( % ) ; 

Now, finally, our answer is plain: 

> simplify( % ) ;  
7T 


A somewhat more efficient version of (17) was discovered by Fabrice Bellard. 
This has led Colin Percival, an undergraduate student at Simon Fraser, to design 
an ingenious parallel internet computation of staggeringly high order hexadecimal 
digits of T . Details may be found at http://www.cecm.sfu.ca~projects/pihex/:the 
five trillionth bit of .ir is '0'. 

7.3 Fast series for the Catalan constant. Consider the Catalan constant, which can 
be defined by 

or alternatively by 

G = logtan 0 d 0  = - /1 
-
1% u du. 

0 0 1 + u 2  
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This is perhaps the simplest constant whose irrationality is still unsettled. 
Ramanujan discovered the following series for G, which converges much more 

quickly than (19) [3, p. 3861: 

After many false starts, David Bradley found a new family of series that includes 
(20). One member of this family is 

where the Lucas numbers L, are given by L,, = L,,-, + L ,,-, with Lo = 2, L,  = 1. 
The general formula for Bradley's family of series is proved using certain 

identities among log tangent integrals. For example, (21) is proved using 

This identity was discovered by an LLL integer relation algorithm. It turns out to 
be quite easy to search for such relations among log tangent integrals, whereas 
looking for resummations of the original series (by LLL) is quite difficult. 

David Broadhurst has, in his pursuit of new insights for theoretical physics, 
computationally probed more of these constants [12]. Based on an extraordinary 
blend of intuition, methodical use of PSLQ, and computer-assisted proofs, he was 
led to remarkable binary identities for polylogarithmic constants such as 4'(3), 4'(5), 
and Catalan's constant. His formula for Catalan's constant is: 

Thus, digits of both G and .ir may be computed in the same fashion, and we might 
hope that the formula sheds some light on the normality of Catalan's constant. 
[Recall that a number is 'normal' if its digits occur with equal frequency.] 

8. SIN, REDEMPTION, AND CAUTIONARY TALES 

The object of mathematical rigor is to sanction and legitimize the conquests 
of intuition, and there was never any other object for it. 

-J. Hadamard, quoted in [24] 

Experimental mathematics cannot supplant rigorous mathematics. Dropping the 
latter for the former would indeed be a 'sin'. We have seen at least one example of 
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a false computer generated conjecture-namely the egyptian fractions example in 
Section 1-and we could come up with many more [5]. Experimental mathematics 
is, however, a good supplement to rigorous mathematics. It can enrich our subject 
and, when used with discipline, can significantly assist mathematical discovery. We 
have also seen examples where the computer can assist with the proof. 

As a final demonstration, consider the power series 
V ~ I 

In [S], a functional relation was sought in pursuit of a proof of the identity 
J(1) = 8J (  - 1). For 0 I x I 1, 

+ ln(1 - x)polylog(2,1 - x )  - polylog(3,l - x ) .  
It can be shown that 

This relation was found, once the ingredients were determined by inspection, by 
evaluating (22) (actually, a version of it with undetermined coefficients) at a 
random point and then using LLL. Another successful strategy is to evaluate each 
J function at enough specific values of x to enable one to solve linear equations 
for the unknown coefficients. 

If L(x) and R(x) denote the left-hand and the right-hand sides of (22), 
respectively, then computer manipulations (under the assumption 0 < x < 1) 
show that dL/dx = dR/dx: mechanically differentiating both sides and using 
s i m p l i f y  reduces the difference between the two to zero. Observing that 
L(0) = R(0) = 0 completes a proof of (22). 

8.1 Knowing 'the answer' might limit us. We are all familiar with examples of the 
value of 'doing things ourselves'. It is now trivial in most computer algebra systems 
(CAS) to compute very large values of the partition function with little or no 
thought, directly from the generating function 

The well-known exact finite series for values of the partition function, due to 
Radamacher [25], and its wonderful infinite, asymptotic precursor due to Ramanu- 
jan and Hardy, might well have seemed less worthy of discovery, had CAS been 
available then. We must be careful to ensure that our use of new tools neither 
limits us to what they can find for us nor supresses our interest in things easily 
computed. 

This really will require attention: for example, the authors of [9] report in their 
conclusions that had they been aware of the answers in the Encyclopedia, they 
might not have bothered to prove what they did-and their results went beyond 
those in the Encyclopedia! 
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APPENDIX A. THE LAMBERT W FUNCTION IN BRIEF. If you have used 
MAPLEto solve transcendental equations, you may already have encountered the 
Lambert W function, defined by (3). The history and some of the properties of this 
remarkable function are described in [14]. This function provides a beautiful new 
look at much of undergraduate mathematics, in addition to some new puzzles of 
intrinsic interest. 

Here are some of the elementary properties of W. 

1. On 0 Ix < there is one real-valued branch W(x) 2 0 (see Figure 1). On 
- l / e  < x < 0 there are two real-valued branches. We call the branch that 
has W(0) = 0 the principal branch. On this branch, it is easy to see that 
W(e) = W(l .el) = 1. 

2. 	The derivative of W can be found by implicit differentiation to be 

where the second formula follows on using exp W(x) = x/W(x), and holds if 
x # 0. We may use the first formula to find the value of the derivative at 
x = 0, and we see the singularity is just a removable one. 

3. The function y 	= W(expz) satisfies 


y + logy = z .  


This function appears, for example, in convex optimization. Consider 
the conuex conjugate, f "(s) = sup,rs - f(r), of the function f ( r )  = 

rln(r/(l - r)) - r. Calculation shows that f "(s) is just W(exp s). 
4. 	W(x) has a Taylor series about x = 0 with rational coefficients. Similarly, 

W(exp z) has a Taylor series with rational coefficients about z = 1. MAPLE 
computes the first few terms to be 

Here is an exact formula for the coefficients of the nth derivative of 

W(expz), containing second-order Eulerian numbers (( i))[18]. This formula 

comes from the following expression for the nth derivative of W(exp z), 
which is stated in [14]. Once the answer is known, the proof is an easy 
induction, which we leave for the reader. 
The derivatives of W(expz) are 

d" q,,(W(eZ))
-W(ez) = 
dz" ( I  + ~ ( e " ) ) ~ " - '' 

where q,(w) is a polynomial of degree n satisfying the recurrence relation 
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and having the explicit expression 

If n = 1we have q,(w) = w, and it is convenient to put q,(w) = w/(l + w); 
this isn't a polynomial, but it makes things work out right. This means that 
our series for W(expz) about z = 1 is just 
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