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Now let f l ,  . . . , f, be continuous functions that are orthonormal in H. For all real 
numbers a l ,  . . . , a, and all x E [0,11, we have 

Fix x E [ O ,  11, and let ai = f i ( x ) .  Then x y = l ( f i ( x ) ) 25 K so ,/--, . 
Cy=l(fi(~))25 K ~ .Integrating both sides from 0 to 1 gives n 5 K ~ .Thus every 
orthonormal set of continuous functions in H has at most K~ elements. This contradicts 
the assumption that H is infinite-dimensional. 

The conclusion does not follow with (0 ,  11 in place of [0, 11. For n = 1 ,  2, . . ., let 
f,: [0,  11 + R be a continuous function with 1 1  f, 112 = 1 and support in ( l / ( n+ I ) ,  l l n ) .  
Then { f,] is an orthonormal set, so the map @: l2 + L ~ [ o ,11 given by @ ( a )= xgla ,  f, 
is a linear isometry. In addition, each @ ( a )is continuous on (0 ,  I ] ,  since for all x E (0 , 11 
there exists an open interval I about x such that f, # 0 on I for at most one n. Thus 
the range of @ is a closed, infinite-dimensional subspace of ~ ~ ( 0 ,11 whose elements are 
continuous functions. 

The first part of this problem is contained in problems 28 and 55 in Chapter 10 of 
H. L. Royden, Real Analysis, Third Edition, Macmillan, 1988. The solution here follows 
Royden's generous hints. 

Solved also by P. J. Fitzsimmons, P. M. Jawis, J. H. Lindsey 11, A. Sasane (The Netherlands), and the proposers. 

Two Recurrence Relations, One Easy, One Hard 

10670 [1998,559]. Proposed by Salomon Benchimol and Elliott Cohen, Paris, France. 
(a)For which values of uo > 0 and u 1 > 0 does the sequence defined by un+2 = 1+un+1 /u ,  
for n 3 0 converge? 
(b)For which values of uo > 0 and u 1 > 0 does the sequence defined by u,+2 = 1+un /u,+l 
for n 2 0 converge? 

Solution ofpart (a)  by Con Amore Problems Group, Copenhagen, Denmark. This sequence 
converges to 2 for every choice of uo, ul > 0. Clearly un > 0 for all n ,  so u ,  = 1 + 
un-l/un-2 > 1 forn 2 2. I fn  > S,thenu, = l+u,-l/un-2 = < 3.1 + 1 / ~ ~ - 3 + 1 / ~ ~ - 2  

This proves the k = 0 case of the following claim: For any k 3 0 ,  

22k+2 - 1 22k+3+ 1 
un > 

22k+' + 1 
for n 2 6k + 2, and un < 22k+2 - forn  1 6 k  + 5. 

This proves convergence, since both of these bounds converge to 2 as k -+ oo.We prove 
the claim by induction. Choose k 2 1 and assume that the claim holds for smaller values 
of k. For n 2 6(k - 1) + 5 = 6k - 1, we have 

Therefore, for n 2 6k + 2, we have 

as required. For n > 6k + 5, we then have 

as required. 
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Editorial comment. No correct solutions of (b) were received. It appears that the set of pairs 
( x ,  y) such that the sequence defined by uo = x ,  ul = y,  un+2 = 1 + u,,/u,,+~ converges 
is a curve through ( 2 , 2 )of the form 

Part (a) solved also by S. S. Kim and the proposer 

The Number of Zeros of a Maclaurin Polynomial 

10671 [1998, 5591. Proposed by F: Rothe, University of North Carolina, Charlotte, NC. 
Let 

be the Maclaurin polynomial of order 2n + 1 of the sine function. Let c, be the number of 
real zeros of P,, . Determine limn,, cn/(2n+ 1). 

Composite solution by Sung Soo Kim, Hanyang University, Ansan, Kyunggi, Korea, and the 
editors. The integral form of Taylor's theorem tells us that 

P,, ( x )  = sin x + ( -1)"  
e2,,+1(~), where e k ( x )= ( x  - t ) ksin t dt

(2n + I ) !  I" 
Now el ( x )  = x - sin x and is positive for all x > 0 , and ei ( x )  = kek-l ( x )  for k > 1. Thus 
for k 2 3, e k ( x )is positive, increasing, and convex (concave up) on (0 ,cm). 

Let f,, ( x )  = e2,,+1 ( x ) / ( 2 n  + I ) ! .  We now consider the intervals [a ,  b ]  on which sin x 
is monotone. Suppose first that n is even and f,,(b) < 1. If a = (2m - 1 / 2 ) n  and 
b = (2m + 1 / 2 ) n ,  then P,,(x) is negative at a and positive at b and strictly increasing 
on [ a ,  b]  so there is exactly one zero of P,, in [a ,  b] .  If instead a = (2m + 1/2)n  and 
b = (2m + 3 / 2 ) n , then P,,(x) is positive at a and negative at b. If c = (2m + 1)n,then 
P,, is positive on [ a ,  c ] .  Thus P,, has at least one real zero in [c ,  b] .  If there were more 
than one zero in [c ,  b ] ,  there would have to be some z E [c ,  b] with P,!,'(z)< 0:  a convex 
function cannot be zero at more than one point on an interval if it is positive at one end 
and negative at the other. But sin(x)If > 0 on [c ,  b] ,  so also P,!,' > 0 on [c ,  b ] ,  which is a 
contradiction. The case where n is odd is similar. The final case to be considered is when 
f,, ( a )  < 1 < f,, (b ) .  Here there can be two zeros in the interval, but again considerations 
of convexity forbid more. 

This shows that the number of real zeros of P,, differs by at most a constant from the 
number of intervals (k - n / 2 ,  k + n / 2 )  in which f,, < 1. That number is given to within a 
bounded error by 2 B ( n ) / n ,where B(n) is the unique positive solution to f,,(x) = 1 .  But 

( x  - t ) ksin t d t  < I"( x  - t ) ksin t d t  2 n x k ,  

while 
2n k 

e k ( x )> 1 ( x  - t ) ks i n t d t  = s inudu  > 2 n k ( x  - x ) ~ - ' .  

Thus B(n) lies between the solutions $0x2"+' = (2n+ l ) ! / nand ( x-n)2n= ( 2 n ) ! / ( 2 n ) .  
Both are asymptotically 2nle by Stirling's formula, so B(n)  % 2nle. Thus, the number c, 
of real zeros of P,,(x) is asymptotic to 4 n / e n ,  so that cn/(2n+ 1 )  % 2 / e n .  

Editorial comment. David Bradley pointed out that the result is known and may be found 
(with details for the cosine function) in G. Szego", ~ b e r  eine Eigenschaft der Exponential- 
reihe, in Gdbor Szegb': Collected Papers 1915-1927, Birkhauser, 1982, p. 659). 

Solved also by J.  H.Lindsey 11, GCHQ Problems Group, and the proposer. 
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