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An AM-GM Variation 

10672 [1998, 5591. Proposed by V Anil Kumal; Kerala ~ ~ r i c u l t u r a l  University, Tavanul; 
Kerala, India. Let pl , p2, . . . , p, be positive real numbers summing to 1, and assume that 
ai,,, > 0 for 1 5 i 5 m and 1 5 j 5 n .  Prove that 

Solution by John H. Lindsey II, Fort Meyers, FL. With x,j = Cy=l plal,,j niZ1 ai,k) ,  
the left-hand side is the geometric mean of xl,. . . ,x, and hence is less than or equal to the 
arithmetic mean of xl,. . . ,x,, which is 

Solved also by S. Amighibech (France), R. J. Chapman (U. K.), Q. H. Darwish (Oman), W. Janous (Austria), B. Kalantari, S. S.  
Kim (Korea), M. S. Klamkin (Canada), R. Martin (U. K.), A. Nijenhuis, C. R. Pranesachar (India), H.-J. Seiffert (Germany), S. M. 
Soltuz (Romania), S.-E. Takahasi (Japan), T. V. Trif (Romania), GCHQ Problems Group (U. K.), and the proposer. 

Functions with a Polynomial Addition Formula 

10675 [1998, 5601. Proposed by Harry Tamvakis, University of Pennsylvania, Philadel- 
phia, PA. Find every continuous function f : R + IR such that some polynomial P ( x ,  y )  E 
R [ x ,  y] satisfies f ( x  + y )  = ~ f(( x ) ,  f ( y ) )  for every x ,  y E R .  

Solution by GCHQ Problems Group, Cheltenham, U. K. The function f can take one of two 
forms: 
(i) f ( x )  = a x  - c using P ( u ,  v )  = u + v + c ,  including the special case of constant f 
when a = 0 ; and 
( i i ) f ( x )  = ( d x  - a ) / b using P ( u ,  v )  = a ( u  + v )  +buv + (a2- a ) / b .  

When y = 0 ,  we get f ( x )  = P (  f ( x ) ,  f ( 0 ) )  = Q(  f ( x ) )  for some polynomial Q. If the 

degree of Q is more than 1, then the value of f is restricted to the roots of the polynomial 

Q (  f )  - f = 0 .  Since f is continuous, it must be constant. 


Assume now that the degree of Q is 1 and f is not constant. Since f ( x  +y )  = f ( y  + x ) ,  
P ( u ,  v )  is symmetric in u and v and must be of the form a ( u +v )+buv +c.  Setting y = 0 
yields 

f ( x )  = P ( f  ( x ) ,  f (O) )  = a ( f ( x )+ f (O) )  + b f ( O ) f ( x )  + c ,  

so f ( x ) ( l - a - b f  ( 0 ) )= a f  (O)+c. Since f isnotconstant, 1-a-bf ( 0 ) = 0 = a f  (O)+c. 
If b = 0 ,  then a = 1 and P ( u ,  v )  = u + v + c. Hence f ( x  + y )  = f ( x )  + f ( y )  + C ,  

and so f ( 0 )  = 2f ( 0 )  + c and c = -f ( 0 ) .  Setting g ( x )  = f ( x )  - f ( 0 )  yields g ( x  + y )  = 
g ( x ) + g ( y )  so that g ( x )  = ax  and f ( x )  = ax  - c. 

If b # 0 ,  then f ( 0 )  = (1  - a ) / b  = - c /a ,  so c = (a2- a ) / b .  Hence f ( x  + y )  = 
a (  f ( x )  + f ( 1 1 ) )  + b f  ( x )  f ( 1 1 )  + (a2- a ) / b ,which yields 

Setting g ( x )  = b f  ( x )  + a ,  we get g ( x  + y )  = g ( x ) g ( y ) ,and hence g ( x )  = d X for some 
d > 0.  Thus f ( x )  = ( d X- a ) / b .  

Solved also by J. H. Lindsey 11, A. Nijenhuis, and the proposer. 
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