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The Weyr Characteristic 

Helene Shapiro 

1. INTRODUCTION. The Jordan canonical form is a well-known and standard 
topic in linear algebra. It is thoroughly covered in many texts on linear algebra and 
abstract algebra. The purpose of this article is to publicize a different approach to 
the canonical form problem introduced by Eduard Weyr in 1885 [28], [29]. Several 
older books ([IS, pp. 73-74] and [16, pp. 117-1181) mention Weyr characteristics 
but it does not appear in recent linear algebra texts. The basic idea of Weyr's 
approach is useful in several areas, such as describing algorithms for computing 
the Jordan form in a stable manner ([S], [13], and [IS]), and in developing canonical 
forms for matrices under unitary similarity ([2], [14], [21], and [22]), but Weyr's 
papers are rarely referenced and the sequence of numbers we call the Weyr 
characteristic is not named. Thus, while Weyr's work seems to be little known, his 
basic idea has been rediscovered and used several times. I first learned of the 
Weyr characteristic from Hans Schneider, when I was a post-doc at the University 
of Wisconsin in 1980. Schneider and others have studied the relationship between 
the Weyr characteristic and the singular graph of an M-matrix ([9], [lo], [17], 
and [19]). 

In this paper we define the Weyr characteristic and discuss its connection with 
the so-called "staircase" forms used in numerical linear algebra to determine the 
Jordan form in a stable manner. There is a simple relationship between the Weyr 
characteristic and the better known Segre characteristic, which is associated with 
the Jordan canonical form. This relationship leads to a quick derivation of Weyr's 
canonical form from the Jordan canonical form; we also present a proof that is 
independent of the Jordan canonical form, as Weyr did in his original paper. 

The Jordan canonical form gives a canonical form for square matrices under the 
equivalence relation of similarity. It can be used whenever the field contains the 
eigenvalues of the matrix; typically, one is interested in matrices over the field of 
complex numbers. The Jordan canonical form of a square matrix A is a direct sum 
of square submatrices, called Jordan blocks. Each such block has an eigenvalue of 
A in the diagonal entries, a line of 1's along the superdiagonal, and zeros in all 
other entries, as shown in Figure 1. 

Figure 1. A Jordan block with eigenvalue a .  

There is at least one Jordan block for each eigenvalue of A and there may be 
several Jordan blocks for a single eigenvalue. The list of the non-increasingly 
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ordered sizes of the blocks belonging to a given eigenvalue a is called the Segre 
characteristic of A relative to a .  The Jordan canonical form displays all the 
information needed to know the algebraic structure of a linear transformation. The 
eigenvalues appear on the main diagonal, and the Segre characteristic reflects 
the action of the transformation on the generalized eigenspaces. To quote Golub 
and Wilkinson [8, p. 57681, "From the standpoint of classical algebra, the algebraic 
eigenvalue problem has been completely solved. The problem is the subject of 
classical similarity theory, and the fundamental result is embodied in the Jordan 
canonical form." 

Weyr's canonical form is a block triangular matrix in which the diagonal blocks 
are scalar matrices (that is, scalar multiples of identity matrices), the superdiagonal 
blocks contain identity matrices augmented by rows of zeros, and all the other 
blocks are zero. The list of the non-increasingly ordered sizes of the diagonal 
blocks corresponding to an eigenvalue cu is called the Weyr characteristic of 
A relative to a .  These numbers are determined by the dimensions of the nullspaces 
of powers of (A - a I ) ;  we give precise definitions later. For example, if the Weyr 
characteristic of A corresponding to a is (7,5,2,2), then the block of the Weyr 
canonical form of A corresponding to a would have the form shown in Figure 2. 

Weyr's approach is related to methods developed in numerical linear algebra for 
computing the complete eigenstructure of a matrix. While one can derive the 
Jordan canonical form using an algorithmic approach [4], there are numerical 
reasons to avoid direct computation of the Jordan form [5, p. 1461. In numerical 
computations, one must consider the effect of rounding errors and errors in the 
input. If the matrix is ill-conditioned with respect to the desired computation, or if 
the algorithm is not carefully designed, then small errors in the input or rounding 
errors may result in large errors in the output. Computing the inverse of a matrix 
that is close to being singular, or applying a similarity that is close to a singular 
matrix can lead to disaster. It is better to use algorithms that involve only 
orthogonal or unitary transformations. Algorithms developed by Kublanovskaya 
[13], Ruhe [la], and Golub and Wilkinson [8] for computing the Jordan canonical 
form of a matrix in an efficient and stable manner use unitary transformations to 
transform the matrix to a block triangular, or "staircase" form, in which the block 
sizes correspond to the Weyr characteristic. These algorithms are typically de- 
scribed in terms of QR factorizations, and/or singular value decompositions, but 
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Figure 2. The block of the Weyr canonical form corresponding to an eigenvalue ct with Weyr 
characteristic (7,5,2,2). 
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in theoretical terms, these computations find the null spaces of powers of (A - a I ) ,  
for each eigenvalue a .  Related ideas also appear in Van Dooren's work ([I], [25], 
[261, and [27]) on computing the Kronecker normal form of a matrix pencil, 
A + AB. We do not describe these methods here and refer the reader to the 
original sources for specific algorithms and an analysis of their stability and 
efficiency. Our aim is to present Weyr's basic theory and give some proofs that are 
motivated both by the methods used in the numerical algorithms and by Weyr's 
original presentation. 

2. PRELIMINARIES. We work over an algebraically closed field F. The vector 
space V = F n  is the space of column vectors of length n over F .  If T is a linear 
operator on V, that is, a linear transformation from V to V, then T can be 
represented by an n x n matrix over F ,  relative to a choice of basis for V; the 
matrix representation depends on the choice of basis. If A and B are two n X n 
matrices that represent T, relative to two choices of basis, then A and B are 
related by the equation B = P-'AP, where the nonsingular matrix P is the change 
of basis matrix. We say A and B are s~mzlar. 

If F is the field of complex numbers C, we have the usual inner product on Cn.  
A square, complex matrix U is said to be unitary if U-I = Ux (the star denotes 
the conjugate transpose); this is equivalent to saying that the columns of U form 
an orthonormal basis for C n  with respect to the usual inner product. Applying a 
unitary similarity to A is equivalent to a unitary change of basis. 

We frequently deal with matrices that are partitioned into submatrices that have 
special forms. If A is an n x n matrix, we may partition the rows of A into t sets 
consisting of the first n, rows, the next n, rows, and so on, finishing with the last 
n, rows, where n, + n, + ... +n,  = n. Partitioning the columns of A in the same 
way breaks the matrix up into t2 blocks, A,,, where A,, denotes the block formed 
from the ~ t h  set of rows and the jth set of columns. Note that A,, is n, x n, and 
the diagonal blocks are square. If all blocks below the diagonal blocks are zero 
(A,, = 0 for z > j )  then we say A is block (upper) triangular. One can visualize the 
form of such a block triangular matrix as a staircase. If A,  denotes the zth diagonal 
block (A,,) then we also say that A is 7 ( A 1 ,  A,, . . . ,A,) or write A = 

7 ( A l ,  A,, . . . ,A,). 

'A,  A13 " '  A,/ \ 
0 A, A,, ... A,,

A = 7 ( A l ,  A, , .  . . ,A,) = 0 0 A, ... A31 
. . . . . . . . . . . . . . . . . . . . . 

\ o  0 0 ...- A t ,  

If Ai and Bi have the same size for each i, then the product of A = 

7 (  A , ,  A, ,  . . . , A , )  with B = 7  ,  B . . . , B has t he  form 
7 ( A l B l ,  A,B,, . . .,A,B,). When all the off-diagonal blocks are zero (Aij  = 0 for 
i # j )  then we say A is block diagonal, and say A is (A,, A,, . . .,A,) or write 
A = 9 ' ( A , ,  A,, . . .,A,). We also say A is the direct sum of A,, A,, . . .,A,. 

We use N(A) to denote the null space of A and null(A) for the nullity of A,  
i.e., the dimension of N(A). The range space of A is denoted by R(A) and 
rank(A) denotes the rank of A, i.e., the dimension of R(A). 

We use Ikto denote the k x k identity matrix and 0, for the k X k zero matrix. 
For r > s, the notation I,.,,means a matrix with r rows and s columns in which 
the first s rows are I, and the remaining r - s rows are rows of zeroes. For 
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example, 

A matrix with linearly independent columns is said to have full column rank; for 
example I,.,,has full column rank. Note that if r > s and A is an r x s matrix with 
full column rank, then there exists a nonsingular r x r matrix B such that 
BA = I,.,,. 

3. REDUCTION TO THE NILPOTENT CASE. As with the Jordan form, deriving 
the Weyr form boils down to analyzing the action of the linear transformation on 
its generalized eigenspaces, and ultimately to analyzing nilpotent transformations. 

Let T be a linear operator on V, and let spec(T) = {a l ,  a , , .  . . , a,} denote the 
set of distinct eigenvalues, or spectrum, of T. The generalized eigenspace for each 
eigenvalue a, of T is the subspace 

V ,  = {x E Vl ( T  - a.I) 'x = 0 for some nonnegative integer k}. 

The space VaJ is invariant under T and contains the eigenspace U,, = {x E VI 
(T  - a i I ) x  = 0). Furthermore, V is the direct sum of the generalized eigenspaces 
Va2. Thus, setting x = Va2, we have V = V, @ V, @ ... @ V,. Now let ni  be the 
dimension of I.: and let T, denote the action of T on the subspace v.Choose a 
basis for each and form a basis B for V by taking the union of these bases. 
Then the matrix of T with respect to B is 9(n,, . . .,n,), where the ith diagonal 
block represents T .Thus, we can describe a canonical form for T by describing a 
form for the blocks, or for each T .Now let 4.= T - a i ln , .  Then 4is a nilpotent 
linear operator on x and we have reduced the problem to analyzing the action of a 
nilpotent linear operator or matrix. 

4. THE WEYR CHARACTERISTIC FOR THE NILPOTENT CASE. Suppose A is 
an n X n nilpotent matrix. The smallest positive integer k such that Ak = 0 is 
called the index of A. Then 

N (  A )  2N(A') 2N ( A 3 )  2 ... 2N ( A ~ )= V 

and so 0 < null(A) < null(A2) < ... < null(^^) = n. For i = 1,.. .,k, set wi = 

null(Ai) - null(Ai-I). The sequence of positive numbers w ,  o,, . . . ,wk is called 
the Weyr characteristic of A; in Lemma 2 we show that the sequence o , ,  w,, . . . ,wk 
is non-increasing. We write w(A) = (w,, w,, . . . ,w,). Note that o, = null(A1. 

We begin by showing how to compute w(A) via a recursive process that avoids 
computing the powers of A; lemmas 1and 2 are based on work of Kublanovskaya 
[13]. If k = 1, then A is the zero matrix, so we may safely assume that k 2 2. 
Since o, = null(A), the matrix A is similar to a matrix with zeros in the first o, 
columns and thus we can assume A is in the block form 

where A,, is w, x (n - w,) and A, is square of size n - w,. If we are working 
over the complex numbers, A can be transformed to this block form with a unitary 
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similarity, because we can choose an orthonormal basis for N(A) and can then 
extend it to an orthonormal basis for the whole space. Since rank(A) = n - w,, 
the matrix 

has linear independent columns. 

Lemma 1. SupposeA is an n X n matrix in theform LT(O,~, A,), where w, = null( A). 
Partition X in F ' k s  

where X, E FO1and X ,  E Fn-Wl. Then for any giuen positiue integer r, we have 
ArX = 0 if and only if A',-'x, = 0. 

Proof: Since 

we have 

Since the rank of A is n - w,, the matrix 

has linearly independent columns, and so 

if and only if Y = 0. Putting Y =A';-'X, we see that ArX = 0 if and only if 
A;-'x, = 0. 

Lemma 2. Let A = LT(OW1,A,) be an n x n, nonzero, nilpotent matrix with Weyr 
characteristic w(A) = (w,, w,, . .. ,w,). Then w(A,) = (w,, . . .,w,). Furthermore, 
w1 2 w2 2 "' 2 wk. 

Proof: Lemma 1 ensures that null(Ai) = o, + null(Ai,-'), so for each i 2 2 we 
have null(^',-') - null(A;-') = null(Ai) - null(Ai-l) = oi. Thus, @(A,) = 

(w, , .  . . ,wk). 
To prove that wi+, 5 wi we use induction on k, starting with k = 2. Now, 

rank(A) I rank(A,,) + rank(A,). Substituting rank(A) = n - o, and rank(A,) 
= (n - w,) - null(A,) gives null(A,) I rank(A,,). But o, = null(A,) and 
rank(A,,) I o,,  so o, 5 o,. By the induction hypothesis, the result holds for the 
matrix A, and so we have oi+,I wi for all i 2 2. 
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Lemma 2 leads to a recursive process for computing the Weyr characteristic of a 
nilpotent matrix. First one applies a similarity to put A in the form Y(Oml, A,), 
where w, = null(A). This is equivalent to finding the null space of A and choosing 
a basis, B, for V in which the first w, vectors of B are a basis for N(A). When 
F = C, this can be done with a unitary similarity by choosing B to be an 
orthonormal basis. Lemma 2 tells us that we have now reduced the problem to 
finding the Weyr characteristic of the smaller matrix A,. Repeated application of 
Lemma 2 leads to a block triangular form in which the diagonal blocks are zero 
blocks of sizes w,, w,, . . ., w,. In Section 5 we examine this form more carefully 
and show that the superdiagonal blocks have full column rank; this leads to the 
Weyr canonical form. 

We now look at the relationship between the Weyr and Segre characteristics of 
A.  Let S, denote the r x i. matrix with a 1 in each superdiagonal position and 
zeros elsewhere; S,. is a nilpotent matrix of index r. Observe that as we form 
powers of S,, the superdiagonal line of ones moves upwards, and for 1r m r r, 
the power S: has rank r - m and nullity m. The Jordan canonical form of A is 
J =9'(Sr1,Su Z , . . . ,  Sui) where a, 2 a, 2 ... 2 a,.The list (a , ,  a, ,..., a,) is the 
Segre characteristic of A. Since each block S ,  has nullity one, null(A) = t .  
Hence, if w(A) = (w,, w,, .. ., w,), then w, = t is the number of blocks in the 
Jordan form of A.  The nullity of J2 exceeds null(J) by exactly the number of 
blocks of size at least two, so null(^,) = t + (the number of blocks of size 2 or 
more). But null(^,) = w, + w,, so o, is the number of blocks in the Jordan form 
that have size at least 2. Now if we look at J3 ,  we see that null(J3) exceeds 
null(^^) by exactly the number of blocks in J with size greater than or  equal to 3, 
so w, is the number of blocks in the Jordan form that have size at least 3. In 
general, computing null(Jnl) shows that on, is the number of blocks in the Jordan 
form that have size at least m. If we regard the Weyr and Segre characteristics as 
partitions of n, then the Weyr characteristic is the conjugatepartition of the Segre 
characteristic, and we can easily derive one from the other. Using a Ferrers diagram 
to represent the partition w(A) = (w,, w,, . . . ,w,), the number of dots in row i is 
w,, while uL is the number of dots in column i. For example, if w(A) = 

(4,3,3,2,2,2,1), then the Segre characteristic for A is (7,6,3,1) and the corre- 
sponding Ferrers diagram is shown in Figure 3. 

5. THE WEYR CANONICAL FORM FOR THE NILPOTENT CASE. We now 
obtain Weyr's canonical form for the nilpotent case. Since two nilpotent matrices 
have the same Weyr characteristic if and only if they have the same Segre 
characteristic, we see that two nilpotent matrices are similar if and only if they 
have the same Weyr characteristic. Now let W =Y(OW1,Om2,. . . ,OWk)be the block 

Figure 3. Ferrers diagram for (4,3,3,2,2,2,1). 
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triangular matrix in which each superdiagonal block is U/;.,i+l = Iw,, and all 
other blocks are zero. Thus, 

Direct calculation of the powers of W shows that W has Weyr characteristic 
(w,, w2, . . . , w,) Hence, W is a canonical form for all nilpotent matrices with 
Weyr characteristic (w,, w,, . . .,w,). 

This approach is quick and easy, but it depends on the Jordan canonical form. 
Weyr, of course, developed his theory independently. The remainder of this 
section presents a derivation of Weyr's fornl that does not depend on the Jordan 
canonical form. We use Lemma 2 to obtain a block triangular form 
Y(OW1,OW2,.. .,OWk),show that the superdiagonal blocks have full column rank, and 
then show how to further reduce this form to obtain the Weyr canonical form. The 
proofs of the main results are by induction; to get started we need the following 
lemma. 

Lemma 3. Let T be a nilpotent linear operator on V with p ( T )  = (wl, w2, .. ., wk). 
Then T can be represented by a matrix A =Y(OW1,OW2,A), where rank(Al2) = o, 
and so A,, has full column rank. 

Proofl Since w, = null(T), we can represent T by a matrix B =Y(OW1,B,). 
Lemma 2 ensures that w2 = null(B,) so there is a square matrix Q of size n - w, 
such that Q-'B,Q = Y(O,,, 2 ) .  Now let P =9(I,,, Q); then P-~BP= 

Y(OW,OW2'A), so A =Y(Oq, OW2,2 )  is a matrix representation for T: 

Since A has rank n - w,, the last n - w, columns of A must be linearly 
independent, and hence the block A,, (which is w, x w,) must have full column 
rank. 

When k = 2, Lemma 3 tells us that T can be represented by a block triangular 
matrix Y(O,,, OW,),where the w, x w, block A,, has full column rank, i.e., 
rank(A,,) = w,. 

Remark 1. If F = C ,  then in the proof of Lemma 3, we can use an orthonormal 
basis for C n  in which the first w, vectors are a basis for N(T) and can use a 
unitary matrix for Q. Hence, we can obtain a representation for T in the form 
given in Lemma 3 by using an appropriate orthonormal basis. 

Theorem 1. Let T be a nilpotent linear operator on V. Then w(T) = (w,, w2 ,  . . . , wk) 
if and only if T can be represented by a block triangular matrix A =Y(OW1,OW2,. . . ,OWk) 
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in which each superdiagonal block Ai,i + l  has full column rank, i.e., rank(Ai,i + l  1 = 

mi+,. 

Proof We use induction on k.  Assume w(T) = (w,, w,,  . . ., w,). If k = 1, then T 
is the zero matrix. If k = 2, then Lemma 3 gives the result. For the general case,-
we apply Lemma 3 to see that T has a matrix representation B =Y(Ow,,Om2,B), 
where B,, has full column rank. Let B, denote the square submatrix in the last 
n - w, rows and columns; then B, is Y(Om2,B). Lemma 2 tells us that d B , )  = 

(o , ,  . . .,w,), so by the induction hypothesis, there is a nonsingular matrix Q, of 
size n - o,, such that Q-'B,Q =Y(OW2,OWj,.. . ,OWk)with each superdiagonal 
block having full column rank. Apply the similarity P =9'(Iw1,Q) to B to get a 
matrix, A, in the desired form. 

To prove the converse, it suffices to show that a matrix A =Y(Oml,Ow2,.. . ,OWk) 
with superdiagonal blocks of full column rank has Weyr characteristic 
(w,, w,, . . . , w,). We again use induction on k.  Observe that the last n - w, 
columns of such a matrix are linearly independent, so null(A) = w,. If k = 1, then 
A is the zero matrix and we are done. Otherwise, A has the form Y(Oyl,A,) given 
in Lemma 1, and Lemma 2 tells us that the Weyr characteristic of A is 
(w,,  4 , .  . ., 4 1 ,  where (o',, . .., o;) = w(A,). But the induction hypothesis then 
tells us that wi = oi for i 2 2 and we are done. 

Using Remark 1and a unitary matrix for the matrix Q in the proof of Theorem 
1, we obtain the following unitary version of Theorem 1. 

Theorem 1'. Let A be an n X n nilpotent complex matrix. Then w(A) = 

(wl, w,, .. .,w,) i f  and only if there is a unitaly matrix U such that UYAUis a block 
triangular matrix of the form Y(OW1,OW2,.. .,OWk)in which each superdiagonal 
block Ai , i+ lhas full column rank, i.e., r ~ n k ( A , , ~ + , )= mi+,. 

It is also possible to apply further unitary similarities to reduce the superdiago-
nal blocks to special forms; see [2], [21], and [22]. 

For purposes of computing the Weyr characteristic, one would stop with the 
staircase form of Theorem l', which can be reached via a unitary similarity. 
However, this block triangular form is not unique; for a canonical form we must go 
further and use non-unitary similarities. 

Theorem 2. Let T be a nilpotent linear operator on V.Then w(T) = (o , ,  w,, . .. ,w,) 
i f  and only i f  T can be represented by the block triangular matrix W = 

7(OW1,OW2,.. .,OWk),in which the only nonzero blocks are the superdiagonal blocks 
K,i+l= Im , , m ,  i = 1,..., k - 1. 

Proof Using Theorem 1, it suffices to show that a matrix B =Y(Ow,,Om2,. . .,Omk) 
in which each superdiagonal block has full column rank is similar to W. We use 
induction on k .  When k = 1, we have B = 0 and there is nothing to do. Assume 
k > 1. The matrix occupying the last n - w, rows and columns of B has Weyr 
characteristic (w,, w,, . .. ,w,), so the induction hypothesis ensures that it is 
similar to a matrix in the desired form. Thus, there is a nonsingular matrix Q, of 
size n - o, ,  such that C =9 ' ( ImI ,Q-')B9'(Im1, Q) has the desired form except 
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possibly in the first row of blocks, (Owl,C,,, C13,.. .,C,,). Thus, 

Now, null(B) = null(C) = o, so C,, has full column rank. We now reduce C to 
the desired form in two steps. First, we clear out the blocks C13,.. .,C,,, and then 
we reduce C,, to the form Iwl,w2. 

The block C,,. is w, x o,.; let k,, denote the w, x w,.-, matrix obtained by 
adjoining o,  -,- o,.columns of zeros to C,,.. Thus, we have 

and el,. ,? = C,, . Now let P be the matrix of the form Y(IWl,In- in which 
the first w, rows are the blocks (Iwl,e l , ,  C14,. . .,e l k ,O w l  Wk),that is, 

Then P-' has the same form, but its first w ,  rows are the blocks 
(Iw,,-el , ,  - . . ., - e l k ,  Owl.%). A computation using block multiplication 
shows that P - ~ C Phas C,, in its 1 ,2  block, but otherwise has the desired form. 

Since C,, has full column rank, there is a nonsingular w, x w, matrix W such 
that WC,, = I,,, ,>. Let S =g(W-l, IU2,IW3,.. . ,IWk);then S-~P-~CPShas the 
desired form. 

6. THE GENERAL CASE. We can now use our form for the nilpotent case to deal 
with a general linear operator T. As described in Section 2, we can decompose T 
into a direct sum T, @ T, $ ... T,, where each T, is the action of T on the 
generalized eigenspace I/;. Then - aiI is a nilpotent transformation on I/;. We 
say that w(T, - a i l )  is the Weyr characteristic of T, relative to the eigenualue ai.Let 
q.be the Weyr canonical form of Ni; then T can be represented by the block 
diagonal matrix 9( a ,  I + W,, a, I + W,, . . . ,atI + w).This is the canonical 
form described by Weyr [28]; we call it the Weyr canonical form of T. For each 
eigenvalue, a i ,  the Weyr characteristic, w(T - a i I )  is relaxed to the Segre 
characteristic for ai as described in Section 4, and so the Jordan canonical form of 
a matrix can be read off from the Weyr canonical form, and vice versa. 

7. OBTAINING THE WEYR CHARACTERISTIC BY UNITARY SIMILARITY. 
Two n X n complex matrices, A and B, are unitarily similar if there is a unitary 
matrix U such that B = U*AU. In general, a matrix is not unitarily similar to its 
Jordan or Weyr canonical form. However, in numerical computations, it is desir-
able to obtain the information needed to specify the canonical form by using only 
unitary similarities. We briefly outline, in theory, why the Weyr characteristic can 
be found using only unitary similarities. 

The process begins with Schur's result that a square complex matrix can be 
triangularized with a unitary similarity [ l l ,  pp. 79-81]. 
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Theorem (Schur [201). IfA is an n X n complex matrix, then there is a unitary matrix 
U such that U*AU is triangular. 

Proof Start with an eigenvalue, a , ,  of A and an associated eigenvector x, where x 
has length one. Then construct an orthonormal basis for C" in which x is the first 
basis element. Let U, be the unitary matrix that has the basis vectors in its 
columns. Then UTAU, has the form 9 ( a 1 ,  A,) where A,  is (n - I )  X (n - 1). 
Using induction, let U, be a unitary matrix of size n - 1that puts A, in triangular 
form and let U, =&B (1, c,).Then if U = U,U,, the matrix U*AU is triangular. 

Note that we can obtain a triangular form for A with the eigenvalues in any given 
order along the diagonal. Thus, if spec(A) = {a, ,  a,, . . ., a,), where ai has 
multiplicity n,, we can unitarily put A into the form 9 ( A l ,  A,, . . .,A,) where A i  
is an ni X ni  triangular matrix with a, along its diagonal. 

The next step is to show that 7(A,, A,, . . .,A,) is similar to &B (A,, A,, . . . ,A,), 
for this will tell us that the Weyr characteristic of A, relative to the eigenvalue a, 
is simply the Weyr characteristic of the nilpotent matrix A, - ail. To show that 
Y(A,,  A,, . . . ,A,) and g (a,, A,, . . . ,A,) are similar, we use a well-known theo-
rem of Sylvester, which may be found in many sources, e.g., [3], [6, Vol 1, p. 2251, 
[11, Section 2.4, Problems 9 and 131, and [12, Theorem 4.4.61. 

Theorem (Sylvester) [23]. Let A be m x m and B be n x n. Then the matrix equation 
AX -XB = C has a unique solution for every m X n matrix C if and only if 
spec(A) n spec(B) = 0. 

Lemma 4. If A = Y ( A , ,  A,) and spec(Al) n spec(A,) = 0 then A is similar to 
9(Al, A,). 

Proof: Let A, be size ni  x ni for i = 1,2. Let X be the unique n, X n, matrix 
that satisfies A , X  - X A ,  = -A,,. Let S be of the form 9 ( I n 1 ,I,,2)with X in the 
1 ,2  block. Then S-' is 9 ( I n I ,In2)with - X  in the 1,2 block. A computation then 
shows that S-'AS is g (A,, A,). 

Using Lemma 4 with an induction argument proves the following result. 

Theorem 3. If A = Y(A, ,  A,, . . . ,A,), where each spec(A,) = {ai)  and a, + aj 
when i # j, the A is similar to &B (A,, A,, . . .,A,). 

Thus, once we have A in the triangular form Y(A, ,  A,, . . . ,A,), we can find the 
Weyr characteristic of each eigenvalue of A by finding the ~ e y rcharacteristic of 
each nilpotent block A,  - a,I.As pointed out in Section 4, this can be done with a 
recursive procedure and can be done with unitary transformations. We refer the 
reader to references [8], [13], and [IS] for detailed information on numerical 
algorithms and the stability issues involved. 
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