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Two Uniformly Distributed Parameters 

Defining Catalan Numbers 


David Callan 

A path is a finite sequence of k1's with a graphical representation as a sequence 
of contiguous steps of slope + 1(upsteps) and -1(downsteps). For example, the 
path w = (1, - 1, - 1,1, - 1,1,1,  - 1) is pictured in Figure 1. 

Figure 1 

Let PI,denote the set of (5:') paths consisting of n upsteps and n downsteps. 
Each path in P, starts and terminates at "ground level" as in Figure 1. There is a 
well known parameter (statistic) on 9,,that we will call northcnt (to suggest 
a count north of a baseline). For w ~ 9 , ,northcnt(w) is the number of w's 
n upsteps that lie above ground level. Thus northcnt = 2 in Figure 1, and as w 
ranges over 9, northcnt has possible values 0 through n. The paths for which 
northcnt = n-that is, the paths that lie entirely at or above ground level-we call 
Catalan paths. Dually, we call the paths with northcnt = 0 inverted Catalan paths: 
reflection in ground level gives a bijection between the two classes. It is a famous 
fact that exactly l / (n  + 1) of the paths in P, are Catalan: they are counted by the 

Catalan number -( . A combinatorially satisfying way to see this is via the 

Chung-Feller Theorem, which asserts that the parameter northcnt is in fact 
uniformly distributed on [0, n]. This partitions 9, into n + 1 equal-size classes, 
one of which consists of the Catalan paths. For combinatorial proofs of the 
Chung-Feller Theorem, see [I], [2], [3], or [4]. 

Curiously, there is another parameter on PI , ,  westcnt, that serves the same 
purpose: it is also uniformly distributed on [0, n] and it has a constant value on the 
set of inverted Catalan paths. To define westcnt(w), let H denote the highest point 
of w, taking the leftmost one if there is more than one highest point as in Figure 1. 
Then westcnt(w) is the number of w's n upsteps that lie to the left (west) of H. 
Thus the path in Figure 1 has westcnt = 1, and westcnt = 0 precisely for the 
inverted Catalan paths. The parameter westcnt is implicit in [5]. 

One could show directly that westcnt is uniformly distributed on [0, n]. This is 
essentially done in [5], modulo translation from bracket sequences to lattice paths. 
But that still leaves open the question, why? Can one "explain" why northcnt and 
westcnt are equidistributed? A satisfactory answer would consist of a "nice" 
bijection 4 :9, +P, such that westcnt(w) = northcnt($(w)) for all w EP n .  Here 
we give a simple such bijection. 

To define 4 ,  first observe that every path in Pncan be uniquely decomposed as 
in Figure 2 where the C, and Dl are inverted Catalan paths (possibly empty), lying 
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Figure 2 

below the dotted segments. Each u, is an upstep and each di  is a downstep. There 
will be 12 C's and k + 1 D's for some k 2 0; in the illustration, k = 2. To see 
uniqueness, imagine the space above ground level divided into horizontal strips as 
indicated by the dotted lines (extended) in Figure 2. Then ui, di are respectively 
the leftmost upstep and rightmost downstep in the ith strip above ground level. 

The path +(w) is given by flipping over each Ci path so it becomes a Catalan 
path C: and then rearranging components as in Figure 3. Note that since H (the 

Figure 3 

leftmost high point) is the northeast tip of of u, (of u, in Figure 2) 
westcnt(w) = # u's + total # upsteps in the C,. 

Also, 
northcnt(+(w)) = # u's + total # upsteps in the C:. 

However, for each i, # upsteps in Ci = # downsteps in Ci = # upsteps in C,!, and 
hence westcnt(w) = northcnt(+(w)), as desired. 

Finally, to show + is a bijection, we must check reversibility: can the ui, di,  C:, Di 
as in Figure 3 be retrieved uniquely from each path in Pn?Yes: consider the first 
horizontal strip above ground level. Traversing this strip left to right, upsteps and 
downsteps are encountered alternately. These determine the u, and di  (if any). 
The connecting paths (possibly empty) determine the C: and Di in order. We are 
done. 
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