
Determinants of Commuting-Block Matrices

Istvan Kovacs; Daniel S. Silver; Susan G. Williams

The American Mathematical Monthly, Vol. 106, No. 10. (Dec., 1999), pp. 950-952.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28199912%29106%3A10%3C950%3ADOCM%3E2.0.CO%3B2-A

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Sat Dec 22 05:43:33 2007

http://links.jstor.org/sici?sici=0002-9890%28199912%29106%3A10%3C950%3ADOCM%3E2.0.CO%3B2-A
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html


Determinants of Commuting-Block Matrices 

Istvan Kovacs, Daniel S. Silver, and Susan G. Williams 

Let 9 be a commutative ring, and let Mat , (9)  denote the ring of n X n matrices 
over 9 .  We can regard a k X k matrix M = (A('3j)) over Mat , , (9)  as a block 
matrix, a matrix that has been partitioned into k 2  submatrices (blocks) over 9 ,  
each of size n x n. When M is regarded in this way, we denote its determinant in 
9 by IMI. We use the symbol D(M)  for the determinant of M viewed as a k X k 
matrix over Mat,(9).  It is important to realize that D(M)  is an n X n matrix. 

Theorem 1. Let 9be a commutative ring. Assume that M is a k X k block matrix of 
blocks A(',]) E Mat , (9 )  that commute pairwise. Then 

Here S, is the symmetric group on k symbols; the summation is the usual one that 
appears in the definition of determinant. Theorem 1 is well known in the case 
k = 2; the proof is often left as an exercise in linear algebra texts; see [4, p. 1641. 
The general result is implicit in [3], but it is not widely known. We present a short, 
elementary proof using mathematical induction on k. We sketch a second proof 
when the ring 9 has no zero divisors, a proof that is based on [3] and avoids 
induction by using the fact that commuting matrices over an algebraically closed 
field can be simultaneously triangularized. 

Proof: We use induction on k. The case k = 1 is evident. We suppose that (1) is 
true for k - 1and then prove it for k. Observe that the following matrix equation 
holds: 

where N is a (k - 1) x (k - 1) matrix. For the sake of notation, we write this as 

PQM = R ,  (2) 

where the symbols are defined appropriately. By the multiplicative property 
of determinants we have D(PQM) = D(P)D(Q)D(M) = (A(', ')),-'D(M) and 
D(  R)  = A(', 'ID( N). Hence we have (A(', D(M) = A(', ') D(N).  Take the 
determinant of both sides of the last equation. Using ID(N)J = IN\, a consequence 
of the induction hypothesis, together with (2), we find 

(1,l) 
= I R I  = lpl I Q I  I M I  = I A I IMI. 

If JA(',')I is neither zero nor a zero divisor, then we can divide the sides by 
JA(l,l)Jk- '  to get (1). For the general case, we embed 9 in the polynomial ring 

950 NOTES [Monthly 106 



9 [ z ] ,  where z is an indeterminant, and replace A(', '1 by the matrix z I  + A(', '1. 
Since the determinant of zI  +A(', '1 is a monic polynomial of degree n, and hence 
is neither zero nor a zero divisor, (1) holds again. Substituting z = 0 (equivalently, 
equating constant terms of both sides) yields the desired result. rn 

We sketch an alternative proof of Theorem 1when 9 has no zero divisors, a 
proof suggested to us by the referee. It is based on ideas of [31; see also [I]. If 9 is 
a commutative ring with no zero divisors, then we can embed it in its quotient field 
and then pass to the algebraic closure F. We now regard the blocks A('3j) as 
operators on the vector space F n ,  and M as an operator on the tensor product 
V = Fn@ Fk .  Since the blocks A(i,j) commute painvise, there exists a basis for Fn 
with respect to which each A('3j) is upper triangular; see [2, p. 1081. We form the 
tensor product of such a basis with the standard one for F ~ ,  thereby constructing a 
new basis for V. The change of basis has the effect on M of simultaneously 
triangularizing each block. Thus it suffices to assume that each block is~ ( ' 3 j )  

upper triangular. 
The matrix M is permutation-similar to a n X n block matrix M = (& ,4 )  such 

that k,,,= (A(;:;)) is an k x k matrix consisting of the p ,  q-entries of the A(','). 
Since each A(',j) is upper triangular, 4,,= 0 whenever p > q. Hence \ M I  = 

1Al,, I  ... lk,, l = n:= C, ,S:(sgn T)A\:~,"(')) .. . Since each A(' 1 )  is upper 
triangular, the last product is equal to n:=,C, ,sk(sgn T)(A(', "('1) rr(k)))... r , r .  

But this is equal to I C, ,&gn T)A( '~"(')) rr(k)) I. Hence (1) holds. ... A ( ~ ,  
The second proof shows that the commutativity hypotheses of Theorem 1 can be 

replaced by the weaker condition that the blocks can be simultaneously triangularized. 
However, some hypothesis about the blocks is certainly needed for the conclusion 
of the theorem to hold, as the reader can see by considering the matrix 

We conclude by describing a class of block matrices that satisfy the commutativ- 
ity hypothesis of Theorem 1. Matrices of this type arose in [S], and were the 
original motivation for this investigation. Let p(i'j)(t) be polynomials, 1 5 i , j  5 k, 
and let N be an n x n matrix. All coefficients are in 9 ,  which can be taken to be 
the field of complex numbers, if the reader desires. Since the matrices p(i,j)(N) 
commute painvise, the block matrix 

satisfies the hypothesis of Theorem 1. In fact, using the theorem we can say 
something about the determinant of M. Let p ( t )  be the determinant of 
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and let i l ,  . . . ,l,, be the (not necessarily distinct) eigenvalues of N. We leave the 
proof of the following assertion as an exercise: 
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Mixtilinear Incircles 

Paul Yiu 

L. Bankoff [I] has coined the term mixtilinear incircles of a triangle for the three 
circles each tangent to two sides and to the circumcircle internally. Consider a 
triangle ABC and its mixtilinear incircle in the angle A,  with center K,, and radius 
pA. Bankoff has established the fundamental formula 

where r is the inradius of the triangle, and a is the magnitude of the angle at A. 
This formula had appeared earlier as an exercise in [2, p. 231. It leads to a simple 
construction of the mixtilinear incircle. Denote by I the incenter of triangle ABC, 
and let the perpendicular through I to the bisector of angle A intersect the sides 
AC, AB at Y,and Z,, respectively. The perpendiculars at these points to their 
respective sides intersect again on the angle bisector, at the mixtilinear incenter 
K,. The circle with center K,, passing through Yl (and Z,), is the mixtilinear 
incircle in angle A; see Figure 1. 

In this note, we demonstrate the usefulness of the notion of barycentric 
coordinates in discovering remarkable geometric properties relating to the mixti- 
linear incircles of a triangle. To keep the note self-contained, we refrain from 
using (I), except for the remarks at the end. 

Denote by A'  the point of contact of the mixtilinear incircle in angle A with the 
circumcircle. For convenience, we denote K, by K, and pA by p when there is no 
danger of confusion; see Figure 2. The center K lies on the bisector of angle A,  
and AK :KI = p : -( p - r). In terms of barycentric coordinates, 
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