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Does Mathematics Need New Axioms? 

Solomon Feferman 

The question, "Does mathematics need new axioms?," is ambiguous in practically 
every respect. 

What do we mean by "mathematics"? 
What do we mean by "need"? 
What do we mean by "axioms"? 

You might even ask, What do we mean by "does"? 
Part of the ambiguity lies in the various points of view from which this question 

might be considered. The crudest difference lies between the point of view of the 
working mathematician and that of the logician concerned with the foundations of 
mathematics. Some logicians might protest this distinction since they identify 
themselves as (working) mathematicians who happen to specialize in mathematical 
logic. Certainly, modern logic has established itself as a very respectable branch of 
mathematics, and there are quite a few highly technical journals in logic, such as 
The Journal of Symbolic Logic and the Annals of Pure and Applied Logic, whose 
contents, from a cursory inspection, look just like those of other mathematical 
journals, setting subjects aside. Looking even closer, you can pick up a paper on, 
say, the semi-lattice of degrees of unsolvability or the model theory of fields and 
not see it as any different in general character from a paper on combinatorial 
graph theory or cohomology of groups; they belong to the same big frame of mind, 
so to speak. But if you pick up Godel's paper on the incompleteness of axiom 
systems for mathematics, or his work and that of Cohen on the consistency and 
independence of the Axiom of Choice relative to the axioms of set theory, we're in 
a different frame of mind, because we are doing what Hilbert called metamathe-
matics: the study of mathematics itself by the means of mathematical logic through 
its formalization in axiomatic systems. And it's that stance I want to distinguish 
from that of the mathematician working on analysis or algebra or topology or 
degrees of unsolvability, and so on. It's awkward to keep talking about the logician 
as metamathematician, and I won't keep qualifying it that way, but that's what I 
intend. 

Though I won't at all neglect the viewpoint of the working mathematician, for 
most of this article I will be looking at the leading question from the point of view 
of the logician, and for a substantial part of that, from the perspective of one 
supremely important logician: Kurt Godel. From the time of his stunning incom-
pleteness results in 1931 to the end of his life, Godel called for the pursuit of new 
axioms to settle undecided arithmetical problems. And from 1947 on, with the 
publication of his unusual article, "What is Cantor's continuum problem? [12],he 
called in addition for the pursuit of new axioms to settle Cantor's famous 
conjecture about the cardinal number of the continuum. In both cases, he pointed 
primarily to schemes of higher infinity in set theory as the direction in which to 
seek these new principles. In recent years logicians have learned a great deal that 
is relevant to Godel's program, but there is considerable disagreement about what 
conclusions to draw from their results. I'm far from unbiased in this respect, and 

19991 DOES MATHEMATICSNEED NEW AXIOMS? 99 



you'll see how I come out on these matters by the end of this essay, but I will try to 
give you a fair presentation of other positions along the way so you can decide for 
yourself which you favor. 

The Oxford English Dictionary defines 'axiom' as used in Logic and Mathematics, 
by: "A self-evident proposition requiring no formal demonstration to prove its 
truth, but received and assented to as soon as mentioned." I think it's fair to say 
that something like this definition is the first thing we have in mind when we speak 
of axioms for mathematics: I'll call this the ideal sense of the word. It's surprising 
how far the meaning of axiom has been stretched from the ideal sense in practice, 
both by mathematicians and logicians. Some even take it to mean an arbitrary 
assumption, and so refuse to take seriously what purpose axioms are supposed to 
serve. 

When the working mathematician speaks of axioms, he or she usually means 
those for some particular part of mathematics such as groups, rings, vector spaces, 
topological spaces, Hilbert spaces, etc. These axioms have nothing to do with 
self-evident propositions, nor are they arbitrary starting points. They are simply 
definitions of kinds of structures that have been recognized to recur in various 
mathematical situations. But they act as axioms in the sense that they provide a 
framework in which certain kinds of operations and lines of reasoning are appro- 
priate whereas others are not. And once we run into a structure meeting one of 
these axiom systems-for example, a group associated with some equation or with 
a topological space-we can call on a vast body of previously established conse-
quences for our further work. Without trying to argue this further, I take it that 
the value of these kinds of structural axioms for the organization of mathematical 
work is now indisputable. Moreover, we seem to keep coming up with new axioms 
of this sort, and I think the case can be made that they come up due to a 
continuing need to package and communicate our knowledge in digestible ways. 

Now, in contrast to the working mathematician's structural axioms, when the 
logician speaks of axioms, he or she means, first of all, laws of valid reasoning that 
are supposed to apply to all parts of mathematics, and, secondly, axioms for such 
fundamental concepts as number, set, and function that underlie all mathematical 
concepts; I call the latter foundational axioms. I won't get into the question here of 
whether mathematics needs such axioms at all, and let the historical development 
of mathematics speak for that. Certainly, these correspond to such basic parts of 
our subject that they hardly need any mention at all in daily practice, and many 
mathematicians can carry on their entire work without calling on them even once. 
But that doesn't mean that they are not needed in the end to justify that practice, 
nor that they can safely be ignored in all situations. At any rate, I will take the 
necessity of foundational axioms for mathematics for granted in the following. 

In particular, I will be concentrating on two axiom systems at conceptual 
extremes, the Dedekind-Peano Axioms for number theory and the Zermelo-
Fraenkel axioms for set theory. I assume general familiarity with these, and so will 
skimp over the specifics of their formulations, which are in any case not important 
for the following; but I do have to say something about their development and the 
reasons for their acceptance. In both cases, one started with an informal "naive" 
system, which was later transformed into a formal system in the precise sense of 
metamathematics. 

Dedekind's axioms [3] for the natural numbers N = {0,1,2,. . . } simply took the 
initial element 0 [Dedekind started with 11 and the successor operation 
x - X I (  = x + 1) as basic, with the evident axioms that 0 is not a successor and that 
successor is one-one. Induction was formulated set-theoretically, in the form: N is 
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the smallest set that contains 0 and is closed under the successor operation. This 
takes the informal notion of arbitraly set of natural numbers for granted, and in 
those terms the axioms are categorical and hence complete. Dedekind used the 
induction principle to show that one can define functions by simple recursion on 
N, i.e., where we prescribe how the function is defined at 0 and how it is defined at 
any successor element x' in terms of how it is defined at x; in particular this is 
used in the proof of categoricity. The functions of one or more arguments from N 
to N generated by explicit and simple recursive definition are nowadays called the 
primitive recursive functions. 

Peano [24] made a first stab at adding axioms (to those of Dedekind) about 
which sets exist. He stated that every property determines a set, and then gave 
some closure conditions on properties. In the Peano axioms, induction is equiva- 
lent to the statement that any property of natural numbers that holds of 0 and is 
closed under successor holds of all natural numbers. 

If one takes the notions of set or property as not needing any further analysis, 
then it seems to me that the Dedekind-Peano axioms come as close as anything we 
have to meeting the ideal dictionary sense of the word. But the metamathematical 
view is that all notions used in an axiomatic system and all assumptions concern- 
ing these must be fully spelled out. That is done by fixing a formal language for 
number theory, and taking for the properties in the induction principle just those 
expressed by a well-formed formula of that language. The resulting formal system 
nowadays is called Peano Arithmetic and denoted PA. In the formal language of 
PA, whose basic relation is that of equality, = , we need to add symbols for the 
operations + and . to those for 0 and ', with their recursive defining equations as 
axioms; though + and . are set-theoretically definable in terms of the latter by 
Dedekind's result, they are not definable from them in the first-order language 
used for formal arithmetic. However, Godel showed in [lo] that once we have 0, 
', +, and ., all primitive recursive functions are definable in PA. 

Unlike the origin of the Dedekind-Peano axioms in a clear intuitive concept, 
Zermelo's axioms arose out of a need to give some sort of foundation to Cantor's 
revolutionary work in set theory, which many people regarded as problematic. In 
particular, Cantor made essential use of the Well-Ordering Principle (WO), 
according to which any set can be well-ordered, in order to establish various facts 
about cardinal arithmetic, in particular that for infinite cardinals K, p ,  

~ + p =~ . p = m a x ( ~ , p ) , w h i l e ~ < 2 " .  

Moreover, he used WO to show that the infinite cardinals can be laid out in a scale 
indexed by ordinals a ,  

K O  < X I  < N Z  < "' < N, < N,+l < ... < K* < ... , 
where each K,+, is the least cardinal greater than K,, and for limit A, K, is the 
limit of all K, for a < A. This scale and the fact that K O  < 2'0 immediately led to 
the conjecture known as the Continuum Hypothesis, 

(CH) 2'0 = K 1, 
since 2'0 is the cardinal number of the continuum R. The extension of this 
conjecture to all a is called the Generalized Continuum Hypothesis, 

(GCH) 2X. = N,+1. 

The question of justifying the Well-Ordering Principle was worrisome to Cantor. 

At first he argued that it is a "Law of Thought"; then he sought a proof of it on the 

basis of a more evident principle, but failed to come up with anything satisfactory. 

Such a principle was first offered in 1904 by Zermelo [31] in the form of the Axiom 




of Choice (AC). Zermelo proved that AC implies WO; in fact, they are equivalent, 
but Zermelo argued that AC is evident in a way that WO is not. Following 
publication of this work, there were objections not only to the acceptance of AC 
but also to the correctness of his proof of the implication. In order to meet the 
latter objections, Zermelo introduced axioms in [32]that spelled out just which 
principles on sets were employed in his argument. These are the axioms of: 
Extensionality, Empty set, Unordered pair, Power set, Union, Infinity and Separa- 
tion. The latter axiom says that for any definite property P(x)  of objects and any 
given set a, the set b = {x :x E a & P(x)) also exists. This principle was objected 
to as being vague on what counts as a definite property, so, not long after, precise 
proposals were made independently by Weyl, Skolem, and Fraenkel to tie these 
down. Their proposals all essentially amount to taking for the definite properties 
just those expressed in the formal language for set theory, with basic symbols = 

and E . An additional modification was that Zermelo's axioms did not allow one 
to establish the existence of N, for infinite a ;  Fraenkel added his Replacement 
Axiom to accomplish this. As a formal system, the Zermelo-Fraenkel axioms are 
denoted ZF, and the same axioms to which AC is adjoined are denoted ZFC. A 
small point to note is that Zermelo allowed the existence of urelements, i. e., 
objects (other than the empty set) without elements. These have been dispensed 
with in Z F  since they are not necessary for the foundations of set theory. 

What was left unsettled by this development is an explanation of what, exactly, 
the Zermelo-Fraenkel axioms are axioms for. If they are to be considered to be 
axioms in the ideal, dictionary sense, they should be evident for some pre-axiomatic 
concept that we have in mind. The concept of arbitraly set, so to speak at large, 
which might first be offered as a candidate for this is unsatisfactory, because it 
seems to be an evident characteristic of this concept that for any property P(x)  the 
set of all x satisfying P exists. But as we know, this results in contradictions, the 
simplest being that due to Russell, using the property: l ( x  EX),  where 1is the 
negation symbol. And it is just this sort of contradictory construction that Zermelo's 
Axiom of Separation avoids, by applying P only to elements of a "pre-existing" set 
a.  What justifies that, but not the more general, contradictory concept of set? An 
answer was first offered by Zermelo [33] in 1930, in terms of what has since come 
to be called the cumulative hierarchy of sets. In this picture, sets are conceived of as 
being built up from below in stages, starting with the urelements at the lowest 
stage. Since we have dispensed with those, nowadays we simply start with the 
empty set, usually denoted 0. At each stage, we gather together all the sets 
obtained at preceding stages into a single set a.  Then at the next stage we adjoin 
all members of the power set of a ,  @(a), i.e., the set of all subsets of a .  Finally, this 
process is iterated transfinitely. But to spell out what this model is, we need set 
theoretical notions themselves, as follows: the stages are indexed by ordinals. The 
set (or partial universe) of objects obtained at stage a is denoted V,. 

v,= 0, 

K+,= K U @ ( K ) ,  and 

T/, = the union of {Va: a < A} for limit ordinals A .  

It is argued by set-theorists nowadays that the axioms of ZFC are evident for the 
universe V of sets consisting of all objects in some V,. But the intuition for that is a 
far cry from what leads one to accept the Dedekind-Peano axioms. Among other 
things, what this takes for granted is that there is an objective notion of arbitrary 
subset of a given set. This is the Platonistic conception of mathematics applied to 
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set theory, a conception which is philosophically controversial; we shall have more 
to say about that later on. 

We return now to the origins of Godel's program for new axioms in his 1931 
paper [lo] on the incompleteness for formal systems extending arithmetic. I want 
to remind you briefly of these results, for which we need some slightly technical 
notions. The simplest statements of number-theoretical interest are those of purely 
universalform (Vx) f(x) = 0 and purely existential form (3x) f(x) = 0, where f is a 
primitive recursive function; these are dual forms under negation in the sense that 
l (Vx)f(x)  = 0 is equivalent to (3x)g(x) = 0 where g(x) is 0 if f (x)  # 0 and is 1 
otherwise. A formal system S whose language contains that of PA is said to be 
sound for a class K of statements if whenever S F 4 (S proves 4 )  and 4 E K, 
then 4 is true in the natural numbers. It is easily shown that if S is consistent and 
contains PA (or even a weak fragment thereof) then it is sound for (purely) 
universal statements but (as Godel showed) it need not be sound for existential 
statements. S is called 1-consistent just in case it is sound for existential state- 
ments. Note that 1-consistency implies consistency. (Godel himself used a slightly 
stronger notion called w-consistency.) 

A system S is called formally complete if for each closed formula 4 ,  either 
S t- 4 or S F 1 4 .  Hilbert had two fundamental conjectures about PA: that its 
consistency can be proved finitarily and that it is formally complete. Both conjec- 
tures were dashed by Kurt Godel's incompleteness theorems of 1931 [lo]. More- 
over, they apply to (effectively presented) formal systems S extending PA much 
more generally. Godel associated with each such system a purely universal state- 
ment 8,, which expresses of itself, via its Godel number, that it is not provable in 
S. Godel's first incompleteness theorem has two parts. The first part tells us that if S 
is consistent then 8, is indeed not provable in S, so by its very construction, it is 
true. The second part tells us that if S is 1-consistent then 1 8 ,  is also not 
provable in S. For otherwise, being equivalent to an existential statement, if 1 8 ,  
were provable in S it would be true, contrary to the first part. Godel's second 
incompleteness theorem tells us that the number-theoretic statement Con(S) ex- 
pressing the consistency of S is not provable in S if S is consistent. This comes 
about by formalizing the proof of the first part of the first theorem. It follows that 
if S is a system in which all finitary reasoning can be formalized, then the general 
Hilbert finitary consistency program cannot be carried out for S. It is now 
generally accepted that all finitary reasoning can already be formalized in PA, if 
not in much weaker systems, and that's where Hilbert's finitary consistency pro- 
gram has its limits. 

Not only were Godel's results stunning, but also his own explanation of why they 
hold was surprising. This was given in a footnote that was apparently included in 
the paper [lo] only as an afterthought, since it is numbered 4ga. But it expressed a 
fundamental conviction of Godel's which he reiterated throughout the rest of his 
life, and this conviction brings us close to the heart of our leading question. There 
is evidence that he thought such a view would be unacceptable to the Hilbert 
school, and that he must have hesitated to say anything of this sort at all. The 
footnote reads: 

...the true reason for the incompleteness inherent in all formal systems of 
mathematics is that the formation of ever higher types can be continued into 
the transfinite ...[since] the undecidable propositions constructed here become 
decidable whenever appropriate higher types are added. [lo, p. 1911 

However, the connection of incompleteness with set theory is not explained here; 



the unstated reason is that the consistency of a system S can be proved in a system 
that uses variables for sets ranging over arbitrary subsets of the universe of 
discourse of S, by means of which a truth definition for the language of S can be 
introduced. Nothing more like footnote 4Sa was said by Godel until the mid 1940s, 
by which time he was safely ensconced at the Institute for Advanced Study in 
Princeton, and Hilbert was dead and gone. 

In the meantime, Godel had established in [ I l l  his second ground-breaking 
result, that if ZF  is consistent then it remains consistent when we add AC and 
GCH. Godel's method of proof for this was to produce a new cumulative hierarchy 
as a model of set theory, formally defined within set theory, by restricting the sets 
introduced at each stage to be all and only those subsets of the preceding stage 
which are definable in the language of set theory over that stage. The sets 
constructed in this way at stage CY are denoted La ,  and their definition looks 
exactly like the sets V,, except at the successor stages, where we take 

where Def(a) for any set a is the set of all definable subsets b of a. A set is called 
constructible by Godel if it belongs to some L,; then L is used for the collection of 
all constructible sets. The so-called Axiom of Constructibility asserts that all sets 
are constructible, and is symbolized by V = L. This "axiom" served as a conve- 
nient intermediary in Godel's relative consistency proof, as follows: 

1. If ZF  is consistent then ZF  + V = L is consistent. 
2. Z F + V = L  k A C & G C H .  

Aside from the formal positioning of V = L in 1 and 2, in what sense is its 
statement an acceptable axiom for set theory? At the time of his proof (circa 1938) 
Godel stated that it provides a kind of natural completion of the axioms of set 
theory, since it ties down-in a way that ZF  does not-exactly which sets we are 
talking about. But within a decade he was clearly rejecting it as an axiom, on the 
basis of a strongly Platonistic point of view of what set theory is supposed to be 
about. This position first emerged in an article on Russell's mathematical logic in 
1944, but it was only stated forthrightly and with specific reference to open 
set-theoretical problems by Godel in his 1947 article, "What is Cantor's continuum 
problem?" [l2], along the following lines: 

1" Set theory is about a universe V of objects existing independently of human 
thoughts and constructions. It consists of the result of iterating into the 
transfinite the full power set operation, i.e., the operation of forming the set 
of arbitrary subsets of any given set. (So, on the basis of this, there is no 
reason to accept V = L, which says that all sets are introduced by successive 
definitions.) 

2" Statements of set theory have a determinate truth value (in V). In particular, 
all axioms of ZFC are true in V. 

3" So, also, CH has a determinate truth value. According to Godel in [12] it is 
probably false. 

4" Thus CH should be independent of ZFC. (Indeed, this was eventually 
demonstrated in 1963 by Paul Cohen [2].) 

5" And thus, in order to fix the position X, of 2 K ~  in the scale of alephs, we will 
[no doubt] need to add new axioms to ZFC. 

6" These new axioms may be formulated and accepted by a direct extension of 
the informal reasoning that led us to accept ZFC in the first place. More 
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precisely: 

The simplest of these [new axioms]. . . assert the existence of [strongly] 
inaccessible numbers.. . > No. [This] axiom, roughly speaking, means nothing 
else but that the totality of sets obtainable by exclusive use of the processes 
of formation of sets expressed in the other axioms forms again a set (and, 
therefore, a new basis for a further application of these processes). Other 
axioms of infinity have been formulated by P. Mahlo. ...these axioms show 
clearly, not only that the axiomatic system of set theory as known today is 
incomplete, but also that it can be supplemented without arbitrariness by 
new axioms which are only the natural continuation of those set up so far. 
[12, p. 5201 

An uncountable cardinal is called (strongly) inaccessible if it is closed under 
exponentiation and limits of smaller cardinals. It follows that if K is inaccessible 
then I/, is a model of the ZFC axioms. Thus, if it is assumed that there exists an 
inaccessible cardinal then the consistency of ZFC, Con(ZFC), is a consequence 
and so, by Godel's second incompleteness theorem, it is not provable in ZFC (if 
ZFC is consistent). Similarly, if one assumes there are a certain number of 
inaccessible cardinals, then one will not be able to prove the existence of larger 
inaccessibles. The Mahlo axioms assert the existence, to begin with, of arbitrarily 
large inaccessibles, and then of arbitrarily large inaccessible fixed points of the 
enumeration of the inaccessibles, and so on, iterated into the transfinite. An 
informal way of justifying their existence, and, indeed, of infinite cardinals at all, is 
by reference to "Cantor's Absolute": the universe of all sets is beyond being 
captured by any closure condition on sets; instead, any such condition always 
closes off at a set. A bit more explicitly, whatever closure property P one 
recognizes to be satisfied by the universe V of all sets, there will exist arbitrarily 
large K for which VKsatisfies P. Formal versions of this, introduced by Azriel Levy 
[20] and Paul Bernays [I], are called Reflection Principles in set theory. They "are 
behind Godel's reason for saying that we are led to new axioms, such as those of 
Mahlo type, "without arbitrariness" and as a "natural continuation" of those 
axioms previously accepted. But, he continued [from the preceding quote], 

[als for the continuum problem, there is little hope of solving it by means of 
those axioms of infinity which can be set up on the basis of principles known 
today. . .[ibid.] 

The reason is that the Mahlo axioms are consistent with V = L, and since GCH is 
true in L,  and Godel believed CH to be false, its falsity could not be proved in this 
way. "In the face of this," he continued on, 

. . .probably there exist other [axioms] based on hitherto unknown 
principles ...which a more profound understanding of the concepts underlying 
logic and mathematics would enable us to recognize as implied by these 
concepts. [ibid.] 

A candidate for a larger kind of cardinal had in fact been suggested some time 
before, by Stanislaw Ulam, in 1930. Ulam called an uncountable cardinal K 

measurable if there exists a two-valued K-additive measure on @(K). Not much was 
known about the strength of this until 1961, when Dana Scott proved in [25] that 
the existence (MC) of measurable cardinals implies V # L, so MC then became a 
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viable possibility to settle CH. A few years later, Alfred Tarski with his students 
William Hanf and H. Jerome Keisler proved ([16], [19]) that if K is a measurable 
cardinal then it is very large, since V, satisfies the axioms of Mahlo type and other 
powerful axioms of infinity. Their work led further to a notion of strongly compact 
cardinal, whose existence was shown to imply the existence of measurable cardi- 
nals. But then both Tarski and Godel had qualms about the assumption of the 
existence of such enormous cardinals. To quote Tarski: 

the belief in the existence of inaccessible cardinals ...(and even of arbitrarily 
large cardinals of this kind) seems to be a natural consequence of basic 
intuitions underlying the "naive" set theory and referring to what can be 
called "Cantor's absolute." On the contrary, we see at this moment no cogent 
intuitive reasons which could induce us to believe in the existence of [strongly 
compact] cardinals, or which at least would make it very plausible that the 
hypothesis stating the existence of such cardinals is consistent with familiar 
axiom systems of set theory. [27, p. 1341 

In his 1964 revision [13] of his 1947 article, Godel seconded this view of Tarski's in 
full. but then added: 

However, [the new axioms] are supported by rather strong argument from 
analogy.. .([l3, p. 264, ftn. 201, italics mine) 

Moreover, Godel had already proposed in 1947 still another kind of argument that 
might lead one to accept certain statements as new axioms, even though they do 
not rest on the same kind of evidence that led one to accept ZFC in the first place, 
to wit: 

[Finally, we may look for axioms which are] so abundant in their verifiable 
consequences...that quite irrespective of their intrinsic necessity they would have 
to be assumed in the same sense as any well-established physical theory. ([12, 
p. 5211, italics mine) 

Higher axioms of infinity, or so-called "large cardinals" in set theory have been 
the subject of intensive investigation since the 1960s and many new kinds of 
cardinals with special set-theoretical properties have emerged in these studies.' A 
complicated web of relationships has been established, as witnessed by charts to be 
found in the recent book by Aki Kanamori, The Higher Infinite [17, p. 4711, and the 
earlier expository article by Kanamori and Menachem Magidor [la]. A rough 
distinction is made between "small" large cardinals, and "large" large cardinals, 
according to whether they are weaker or stronger, in some logical measure or 
other, than measurable cardinals. Attempts to justify acceptance of both kinds of 
cardinals have been made by set theorists involved in this development. The 
philosopher, Penelope Maddy, in two interesting articles called "Believing the 
axioms," analyzed the various kinds of arguments for these and other kinds of 
strong axioms and summarized the evidence for them [21]. Broadly speaking, the 

l ~ h eelaboration of  this subject has almost outrun the names that have been introduced for various 
large cardinal notions, witness (in roughly increasing order of  strength): "inaccessible," "Mahlo," 
"weakly compact," "indescribable," "subtle," "ineffable," "Ramsey," "measurable," "strong," 
"Woodin," "superstrong," "strongly compact," "supercompact," "almost huge," "huge," and "super- 
huge." 
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arguments are classified as being based on intrinsic or extrinsic reasons. The 
above-mentioned reflection principles are examples of intrinsic reasons, but these 
do not take us beyond the "small" large cardinals. Among the extrinsic reasons for 
going higher are that the assumption of "large" large cardinals has been 
fruitful-through the dazzling work of Solovay, Martin, Foreman, Magidor, She- 
lah, Steel, Woodin and others-in extending "standard" properties of Bore1 and 
analytic subsets of the continuum, such as Lebesgue measurability, the Baire 
property, the perfect subset property, determinateness of associated infinite games, 
etc. to substantially larger classes. 

But the striking thing, despite all this progress, is that contrary to Godel's hopes, 
the Continuum Hypothesis is still undecided by these further axioms, since it has 
been shown to be independent of all remotely plausible axioms of infinity, 
including MC, that have been considered so far (assuming their consistency)'. That 
may lead one to raise doubts not only about Godel's program but also about its 
very presumptions. Is CH a definite problem as Godel and many current set-theo- 
rists believe? Is the continuum itself a definite mathematical entity? If it has only 
Platonic existence, how can we access its properties? Alternatively, one might 
argue that the continuum has physical existence in space and/or time. But then 
one must ask whether the mathematical structure of the real number system can be 
identified with the physical structure, or whether it is instead simply an idealized 
mathematical model of the latter, much as the laws of physics formulated in 
mathematical terms are highly idealized models of aspects of physical reality. 
(Hermann Weyl raised just such questions in his 1918 monograph Das Kontinuum, 
[29].) But even if we grant some kind of independent existence, abstract or 
physical, to the continuum, in order to formulate CH we need to refer to arbitrary 
subsets of the continuum and possible mappings between them, and then we are 
dealing with objects of a higher level of abstraction, the nature of whose existence 
is even more problematic than that of the continuum. Here we are skirting deep 
philosophical waters; let us retreat from them for the moment. 

While Godel's program to find new axioms to settle CH has not been realized, 
what about the origins of his program in the incompleteness results for number 
theory? As we saw, throughout his life Godel said we would need new, ever-stronger 
set-theoretical axioms to settle open arithmetical problems of even the simplest, 
purely universal, form-problems he called of Goldbach type. Indeed, the Gold- 
bach conjecture can be written in that form. But the incompleteness theorem by 
itself gives no evidence that any open arithmetical problems-or, equivalently, 
finite combinatorial problems-of mathematical interest will require new such 
axioms. I emphasize the 'mathematical interest', because Godel's own examples of 
undecidable statements for each consistent S extending PA were of two kinds: the 
first, 0,, cooked up by a diagonal construction in order to establish incompleteness 
and evidently true by the very theorem that it is used to prove, and the second, 
Con(S), of definite metamathematical interest, but not of mathematical interest in 
the ordinary sense of the word. Beginning in the mid-1970s, logicians began trying 
to rectify this situation by producing finite combinatorial statements of prima-facie 
mathematical interest that are independent of such S. The first example was 
provided by Jeff Paris and Leo Harrington who showed in [23] that a modified 
form (PH) of the finite Ramsey theorem concerning existence of homogeneous sets 
for certain kinds of partitions is not provable in PA. PH is recognized to be true as 

' ~ f .Martin [22]; the situation reported there in 1976 remains unchanged to date. 



a simple consequence of the infinite Ramsey theorem; its independence rests on 
showing that PH implies Con(PA); in fact PH is equivalent to 1-Con(PA). Moving 
up to a stronger system, a few years later, Harvey Friedman, Ken McAloon, and 
Stephen Simpson produced a finite combinatorial version FGP of the Galvin-Prikry 
theorem GP that is independent of the Feferman-Schiitte system of predicative 
analysis (call it FS for present purpose^)^. It happens that GP is itself a consider- 
able strengthening of the infinite Ramsey Theorem, and FGP has certain analogies 
to PH. Again, this finitary version FGP is proved to be true as a simple conse- 
quence of GP, while its independence rests on showing that it implies Con(FS); in 
fact, FGP is equivalent to the 1-consistency of predicative analysis. Further results 
of this type have been obtained by these researchers and others for still stronger 
systems of analysis4. While in each case, the statement 4 shown independent of S 
is equivalent to its 1-consistency, the argument for the truth of 4 is by ordinary 
mathematical reasoning. 

For some years, Friedman has been trying to go much farther, by producing 
mathematically perspicuous finite combinatorial statements 4 whose proof re-
quires the existence of many Mahlo axioms or even stronger axioms of infinity and 
has come up with various candidates for that ([7] contains the latest work in this 
direction). From the point of view of metamathematics, this kind of result is of the 
same character as the earlier work just mentioned; that is, for certain very strong 
systems S of set theory, the 4 produced is equivalent to the 1-consistency of S. 
But the conclusion to be drawn is not nearly as clear as for the earlier work, since 
the truth of 4 is now not a result of ordinary mathematical reasoning, but depends 
essentially on acceptance of 1-Con(S). It is begging the question to claim this 
shows we need axioms of large cardinals in order to settle the truth of such 4 ,  
since our only reason for accepting that truth lies in our belief in the 1-consistency 
of those axioms. However plausible we might find that, perhaps by some sort of 
picture we can form of the models of such axioms, it doesn't follow that we should 
accept those axioms themselves as first-class mathematical principles. Finally, we 
must take note of the fact that up to now, no previously formulated open problem 
from number theory or finite combinatorics, such as the Goldbach conjecture or 
the Riemann Hypothesis or the twin prime conjecture or the P = NP problem, is 
known to be independent of the kinds of formal systems we have been talking 
about, not even of PA. If such were established in the same way as the examples 
(PH, FGP, etc.) mentioned above, then their truth would at the same time be 
verified. I think it is more likely, as has been demonstrated in the case of the 
Fermat "last theorem," that the truth of these will eventually be settled-if at all 
-by ordinary mathematical reasoning without any passage through metamathe- 
matics, and that only afterward might we see just which basic axiomatic principles 
are required for their proofs. 

3~riedman, McAloon, and Simpson work with a system ATR, which is shown to be proof-theoreti- 
cally equivalent to the FS system of ramified analysis up to the ordinal To.Friedman later found a finite 
version of Kruskal's theorem KT which is independent of ATR,. The infinitary theorem KT, a staple of 
graph-theoretic combinatorics, asserts the well-quasi-ordering of the embeddability relation between 
finite trees. Friedman's work in this respect is reported in [26]. 

4 ~ h esystems involved and associated independent statements are more complicated to explain and 
would go beyond the scope of this article to do so, but at least one result is worth indicating in 
connection with footnote 3. Friedman found an extended version EKT of KT which is independent of 
the impredicative TIf comprehension principle in analysis (cf. 1261). EKT later turned out to have close 
mathematical and metamathematical relationships with the graph minor theorem of Robertson and 
Seymour, as shown in 191. 
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Moving beyond the domains of arithmetic and finite combinatorics, what is the 
evidence that we might need new axioms for everyday mathematics? Here it is 
certainly the case that various parts of descriptive set theory have been shown to 
require higher axioms of infinity, in some cases well beyond the range of "small" 
large cardinals. But again we are in a question-begging situation, since our belief in 
the truth of these new results depends essentially on our belief in the consistency 
or correctness to some extent or other of these "higher" statements. Also, I think 
it is fair to say that these kinds of results are at the margin of ordinary mathemat- 
ics, that is of what mathematicians deal with in daily p r a ~ t i c e . ~  What is not at the 
margin can be readily formalized within ZFC, and in fact in much weaker systems, 
as has been demonstrated by many case studies in recent years. 

Let's look more specifically at the part of mathematics that is indispensable to 
scientific applications, which clearly includes vast tracts of analysis, among other 
subjects. One of the arguments for accepting any set theory at all, if one is not a 
Platonist, has been advanced by the philosophers Willard van Orman Quine and 
Hilary Putnam, along the lines that some set theory is necessary for the founda- 
tions of analysis, and that the resulting mathematics is justified by its essential and 
successful use in established physical theory. But this argument is undermined by a 
series of case studies, beginning with that of Hermann Weyl in 1918, in his famous 
monograph Das Kontinuum [29], in which he showed in principle how all of 
nineteenth-century analysis of piecewise continuous functions could be formalized 
in a system S reducible to PA, this has been continued since the mid-70s with work 
by Gaisi Takeuti, Harvey Friedman, Stephen Simpson, and myself among others, 
to extend this to substantial portions of twentieth-century analysis including much 
of measure theory and functional analysis. As a result of these studies, I have come 
to conjecture that practically all scientifically applicable mathematics can be 
formalized in systems reducible to PA, or, as I have sloganized it in [4]: a little bit 
goes a long way. Against this, I have learned of a couple of cases in some 
approaches to the foundations of quantum field theory where it appears one must 
go beyond the resources of PA, but the physical theories that require such 
additional strength are rather speculative. In any case, the mathematics needed for 
these cases can be carried out in relatively weak subsystems of impredicative 
analysis, even if PA does not suffice. I am not by any means arguing that everyday 
mathematical practice should be restricted to working in such subsystems. The 
instrumental value of "higher" and less restricted set-theoretical concepts and 
principles is undeniable. The main concern here is, rather, to see: what, fundamen- 
tally, is needed for what? 

To conclude, I hope I have given you some food for thought that will help you 
come to your own conclusions about whether questions like the Continuum 
Hypothesis are determinate, and, if so, what is going to settle them, given that 
present axioms are insufficient. At the beginning of this piece I promised to tell 
you my own views of these matters. By now, you have probably guessed what these 
are, but let me say them out loud: I am convinced that the Continuum Hypothesis 
is an inherently vague problem that no new axiom will settle in a convincingly 
definite way6. Moreover, I think the Platonistic philosophy of mathematics that is 

5 ~ o ran opposite point of view and beautiful exposition of the need for new axioms in that respect, 
cf. Woodin 1301. 

6~~ is just the most prominent example of many set-theoretical statements that I consider to be 
inherently vague. Of course, one may reason confidently within set theory (e.g., in ZFC) about such 
statements as if they had a definite meaning. 
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currently claimed to justify set theory and mathematics more generally is thor- 
oughly unsatisfactory and that some other philosophy grounded in inter-subjective 
human conceptions will have to be sought to explain the apparent objectivity of 
mathematics. Finally, I see no evidence for the practical need for new axioms to 
settle open arithmetical and finite combinatorial problems. The example of the 
solution of the Fermat problem shows that we just have to work harder with the 
basic axioms at hand. However, there is considerable theoretical interest for 
logicians to try to explain what new axioms ought to be accepted if one has already 
accepted a given body of principles, much as Godel thought the axioms of 
inaccessibles and Mahlo cardinals ought to be accepted once one has accepted the 
Zermelo-Fraenkel axioms. In fact this is something I've worked on in different 
ways for over thirty years; during the last year I have arrived at what I think is the 
most satisfactory general formulation of that idea, in what I call the unfolding of a 
schematic formal system [5]. And this returns in an essential respect to the original 
"naive" schematic formulation of principles such as induction in number theory 
and separation in set theory, in their use of the pre-theoretic notion of arbitrary 
"definite" property. That is in closer accord with everyday practice, where such 
principles are taken in an open-ended way, without advance restriction on what 
specific language they are formulated in. But we can systematically enlarge what 
we regard as meaningful in a given subject, by using those very principles in a kind 
of feed-back way, for example in the use of induction to prove that a function or 
predicate of natural numbers defined implicitly by recursion equations is total and 
thus can be added to our language. There are already some definitive results for 
specific systems on what can be obtained by the unfolding process, in joint work 
with Thomas Strahm [6], with a host of new and interesting problems waiting to be 
tackled. But that's another story for another occasion. 
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