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With the recurrence for T, , this yields 

and the probability of matching all cards is (3n - 2)/(4n - 2). When n = 26, this is about 
0.745. 

Editorial comment. The GCHQ Problems Group considered a generalization: Alice starts 
with a piles of two cards (doubles) and c - 2a piles of one card (singles), while Bill starts 
with b doubles and c -2b singles. The probability of failure is ab/(c(c - I)), for c 2 2. The 
proposer observed that his problem is a variation on one that Lewis Carroll recorded in his 
diary on February 29, 1856. That problem, called Sympathy, was given to him by someone 
named Pember and remains unsolved. In Sympathy, the cards are dealt into 18 piles of sizes 
3,3,  . . . ,3, 1 instead of 26 piles of size 2. 

Solved also by D. Beckwith, D. Callan, R. J. Chapman (U. K.), D. A. Darling, I .  E. Dawson (Australia), R. Ehrenborg, P. Griffin, 
C. M. Grinstead, V. Hernhdez & I .  Martin (Spain), R. Holzsager, M. A. Javaloyes Victoria (Spain), I .  T. Lee, I .  H. Lindsey 11, 
J. H. Nieto (Venezuela), L. Pebody (U. K.), B. Peterson, M. A. Prasad (India), A. L. Rocha, W. I .  Seaman, D. S. Silver & 

S. G. Williams, M. Woltermann, N. Zoroa & P. Zoroa (Spain), GCHQ Problems Group (U. K.), and the proposer. 

Wilson's Theorem in Disguise 

10578 [1997, 2701. Proposed by Herbert S. Wig University of Pennsylvania, Philadelphia, 
PA. Consider the sequence y2, y3, .. . defined by the recurrence relation 

and initial conditions y2 = y3 = 1. Show that y, is an integer if and only if n is prime. 

Solution by Florian Herzig, Perchtoldsdor- Austria. Let x, = ny, for all n 2 2. We have 
x2 = 2, xg = 3, and (n - 2)x,+1 = (n2 - n - l)x, - (n - I ) ~ X , - ~for n P_ 3, which 
becomes 

Setting z, = (x,+l - x,)/(n - 1) yields zn = (n - I)!, and so xn+i - x, = (n - l)z,, = 
(n - l)(n - I)!  = n! - (n - I)!. Hence 

n-1 

x, = x 2 +  -xk)  = 2 +  (n - I)! - l !  = (n - l ) !  + 1. 
k=2 

It follows that y, = x,/n = ((n - I)!  + l ) /n .  By Wilson's Theorem, (n - I)! + 1 is 
divisible by n if and only if n is prime. Hence y, is an integer if and only if n is prime. 

Editorial comment. In some books, Wilson's Theorem is the statement that (n - I)!  + 1 is 
divisible by n when n is prime. The converse is also well known and is easily established, 
since ny, = (n - I)! + 1 requires that n and (n - I)!  be relatively prime. 

Walther Janous noted that one might also study sequences of the form y,(a) = % 
for any integer a .  He asks whether there are any integers a > 1 for which this sequence 
contains infinitely many integers; either answer suggests other interesting questions. 

Solved also by R. Akhlaghi & F. Sami, J. Anglesio (France), M. N. Balachandran (India), R. Barbara (Lebanon), C. Berg (Sweden), 
E. Brown, M. Burger (Austria), S. Butcher & X. Wang, D. Callan, R. J. Chapman (U. K.), M. P. Chernesky, B. Conolly (U. K.), 
D. A. Darling, J. E. Dawson (Australia), D. Donini (Italy), H. Gauchman, C. Georghiou (Greece), R. Heller, R. Holzsager, T. Jager, 
W. Janous (Austria), W. Kim (South Korea), R. A. Kopas, J .  H. Lindsey 11, S. C. Locke, R. Martin (Germany), V. J. Matsko, 
B. McCabe, J. H. Nieto (Venezuela), R. Padma (India), M. D. Pearce, W. H. Pierce, J. Robertson, R. K. Schwartz, Z. Shan & 
E.T. H. Wang (Canada), P. Simeonov, A. Sinefakopoulos (Greece), N. C. Singer, A. Stenger, D. C .  Terr, A. Tissier (France), 
J. Van hamme (Belgium), I .  H. van Lint (The Netherlands), M. Vowe (Switzerland), GCHQ Problems Group (U. K.), NSA 

Problems Group, and the proposer. 
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