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where E = (1 + (-1)")/2. We now use the addition formula: for the cosine to express a 
product of two sines as a difference of two cosines and simplify to obtain 

and hence 

m 2 ~+ x 2 ~  (- l ) , ~2nrn2*cos(rrm)
Pzs(m) = lim f2s (x) = 2' (sinh(nm)) - 2 s m 2 ~ - ~  x 

x-+m m2s - X2s 

as required. Note that this formula gives P2(m) = (-l)m+lrtm/ sinh(nm) when s = 1. 

Solved also by R. J. Chapman (U. K.), K.-K. Choi, R. Mortini (France), H.-J. Seiffert (Germany), and the proposers 

Monomial Bounds for Polynomials 

10613 [1997, 7671. Proposed by E J. Flanigan, Sun Jose State University, Sun Jose, CA. 
Fix a positive real number v .  Find all polynomials P(x)  with nonnegative real coefficients 
such that 
(a) P(0) = 0, P ( l )  = 1, and P(x)  5 x u  for all x > 0. 
(b) P(0) = 0 ,  P ( l )  = 1,and P(x)  > x V f o r a l l x2 0 .  

Solution by Roberto Tauraso, Firenze, Italy. Let P(x) = Cy=,, a ixi  with nonnegative real 
coefficients, a, > 0, and a, > 0. The conditions P(0) = 0, P ( l )  = 1 imply immediately 
that m 1. 1 and Cy=,, ai = 1. 
(a) If P(x)  5 x u  for all x 2 0, then necessarily 

lim -P(x) -- lim a,xn-< 1 and lim -p (x) 
-- lim -a,,xm 5 1 ,

x-++oo x u  x-++oo xv - x-+o+ xu  x-+o+ xu  

which imply n 5 v and v 5 m, respectively. Hence m = v = n, and condition (a) is 
satisfied if and only if v is a positive integer and P(x)  = x u .  
(b) If P(x)  2 x u  for all x 2 0, then the function p(x) = P(x) - xu  is nonnegative, 
differentiable, and satisfies p(1) = 0. Hence p has a minimum at x = 1, so p'(1) = 
(Cy=, iai)  - v = 0. Thus v is a convex combination of the integers m, . . . ,n. 

On the other hand, suppose that a polynomial P(x)  = Cy=, a ix i  has nonnegative real 
coefficients such that Cy=,, ai = 1 and xy=,, iai = v. Then P(0) = 0, P ( l )  = 1, and, 
by the weighted arithmetic-geometric mean inequality, P(x)  = Cy=, a ix i  2 xu  for all 
x 2 0. Thus condition (b) is satisfied if and only if v 2 1 and P(x)  = Cy=, a i x i ,  with 
Cy=, ai = 1 and Cy=,, zai =' v .  

Editorial comment. Erik I. Verriest provided a generalization to the case in which P(x) is a 
power series. The results are the same as in the selected solution, except that in part (b) the 
upper limit of summation n may be infinite. 

Solved also by P. Alsholm (Denmark), K. F. Andersen (Canada), T. Armstrong, M. Babilonovd & J. Kupka (Czech Republik), 
R. J. Chapman (U. K.), J. H. Lindsey LI, A. Nijenhuis, C. Popescu (Belgium), H.-J. Seiffert (Germany), E. I. Verriest, GCHQ 
Problems Group (U. K.), NSA Problems Group, WMC Problems Group, and the proposer. 
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