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Cantor's Singular Moments 

10621 [1997, 8701. Proposed by Harold G. Diamond and Bruce Reznick, University of 
Illinois, Urbana-Champaign, IL. Let F ( x )  denote the Cantor singular function, that is, the 
unique non-decreasing function on [0,11 such that, if x = xpl2?i/3,j with ej E {0,I ) ,  

then F ( x )  = EEl q/2,i .  It is clear by symmetry that 1; F ( x ) d x  = 112. Prove that 

3 1
Jdl(F(x)) '  d x  = - and 

10 5 

More generally, evaluate J; (F(x ) )"  d x  for every positive integer n. 

Solution I by Kenneth F: Andersen, University ofAlberta, Edmonton, Alberta. We prove that 

for all positive integers n ,  where Bi denotes the jth Bernoulli number given by Bo = 1 and 
j - I  j+l( j  + l ) B i  = - C m = o ( . m  )Bm for j ? 1. 

The Cantor set C is given by [O,  I]\ Uglu$-;&,j ,  where II.1 is the open interval 

(113,213)and the open intervals I ~ J ,  . . . , IkS2k-lare the middle thirds of the 2k-1IkS2, 

component intervals of [0, l]\ uX;='~ u:i1 I,J. The IkTjare pairwise disjoint, F is con- 
2 k - l  

stant on each Ik3,j,and the range of F on Ui=l Ik,,i is given by { ( 2 j-1 ) / 2 ~: 1 5 j 5 2k-1) .  
Thus the function F takes the value 112 for x E [1 /3 ,2 /3] ,an interval of length 113, the 
value 114 for x E [1 /9 ,2 /9]and 314 for x E [7/9,  8/91, intervals of length 119, and so 
forth. 

To prove ( I ) ,  let an(m)= Cy=l jn.  Note that 

C ( 2 j  - I ) "  = on(zk)- 2"0, 

Since 

(L. Comtet, Advanced Combinatorics, Riedel, 1974, p. 155),we have 

The Cantor set C has measure zero, so we have 
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We have used ( 2 )in going from the first line to the second. Substituting (3 )into (4) yields 

since 3-k = 1/2 .  An interchange in the order of summation now yields ( I ) ,since 
C g 1 ( 3. 2.i-1)-k = 1 / (3  . 2.i-I - 1). Putting B I  = -112, B2 = 116, B3 = 0 ,  and 
B4 = -1130 into ( 1 )yields 

7 1 4 3 3 = 10 l l ( F ( x ) ) d x = - ,  and = -.2301 1 ( F ( X ) ) 2 d x  -, 5 l l ( F ( x ) )  d x  

Solution 11 by Omran Kouba, Higher Institute of Applied Sciences and Technology, Dam- 
ascus, Syria. The function F ( x )  satisfies the following self-similarity property: For every 

Let A ( t )  = e x p ( t F ( x ) )  d x  for t E R.Using the self-similarity property and F(113) = 
F ( 2 / 3 )  = 112 yields 

exp(2t F ( x ) )  d x  + exp(2tF ( x ) )  d x  + 

Thus 
1+ 3A(2 t )- (1  + e f ) ( l+ A ( t ) )  = 0 .  ( 5 )  

On the other hand, letting Jn = t ( F ( x ) ) "  d x ,  we have A ( z )  = Jn /n ! . Substitut-~ ~ , z n  
ing this in (5 )gives 

It follows that we may evaluate the sequence (J,)n20 by the recursion 

1 
Jo = 1, J I  = 5, and Jn = - + ( )k )  for 2. 

Editorial comment. The recurrence is a special case of equation ( 5 ) of J. R. M. Hosking, 
Moments of order statistics of the Cantor distribution, Stat. and Prob. Letters 19 (1994) 
161-165. Javier Duoandikoetxea notes that the integral Jf id  ( F ( x ) ) ~= d x  converges for 
all t > - log 31 log 2, and that J- = EgoJk. Can the precise value of J- 1 be computed? 

Solved also by B. Burdick, R. J. Chapman (U. K.), J. E. Dawson (Australia), M. Desjarlais, J. Duoandikoetxea (Spain) T. Hermann, 
J. R. M. Hosking, I. H. Lindsey 11, 0. P Lossers (Netherlands), V Lucic (Canada), S. Mahajan, K. Schilling, N. C. Singer, 

A. Stenger, E W. Steutel (Netherlands), D. C. Terr, A. Tissier (France), D. B. Tyler, Anchorage Math Solutions Group, GCHQ 
Problems Group (U. K.), WMC Problems Group, and the proposers 
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