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Statistical Independence and Normal 

Numbers: An Aftermath to Mark Kac's 


Carus Monograph 


Gerald S. Goodman 

1. INTRODUCTION. In 1958, Mark Kac delivered the prestigious Philips Lec- 
tures at Haverford College, which formed the basis for his Carus Monograph on 
Statistical Independence [2]. As a student, I had the privilege of attending those 
lectures. By foraging in their aftermath, meaning literally, "that which grows after 
the harvest," I have been led to the following ideas. They may be regarded as 
comprising a long footnote, or possibly a missing chapter, of that Monograph, 
composed in memory of its author by one of his erstwhile "guinea pigs." 

In [2], Kac presents an arithmetical model for coin-tossing, due to Borel [I], 
which culminates in an analytical proof of the Strong Law of Large Numbers for 
Bernoulli trials. The idea is to identify the digits occurring in the binary expansion 
of a point w E R = [0, I), 

m 

(1.1) 
j = l  

with the outcomes of a fair coin-tossing experiment. The j-th digit, aj(w), equals 1 
if tails occurs on the j-th toss, and equals O if the outcome is heads. Then 

is the total number of tails in the first n tosses, and Borel's Strong Law of Large 
Numbers asserts that, when R is endowed with Lebesgue measure, 

Kac's proof of Borel's theorem makes use of the Rademacherfunctions. These 
are defined, for each j E N and w E R,  as 

r,( w) = 1 - 2ai( w), (1.4) 

and they represent the net gain of a gambler who bets one florin on the outcome 
heads at the j-th toss. The orthonormality of the Rademacher functions on the unit 
interval R ,  and, indeed, of their finite products, is a consequence of the fact that 
the binary digits are statistically independent. It is this orthonormality that Kac 
exploits to give a simple proof of the Law of Large Numbers. 

Kac goes on to interpret this result in terms of the existence of simply normal 
numbers. For such a number, the relative frequency of the l's, among the first n 
digits in the binary expansion of its fractional part, tends to 1/2 as n + a.It 
follows from Borel's theorem that almost all real numbers have this property. Kac 
points out that a similar result holds for any integral base b > 1, sketches a proof, 
and concludes, with Borel, that almost all numbers are simply normal to every such 
base. 

112 STATISTICAL INDEPENDENCE AND NORMAL, NUMBERS [February 



Now, it is known [8] that any number that is simply normal to all bases that are 
positive powers of an integral base b has the following property: Every string of 
finitely many b-adic digits occurs in the base b expansion of its fractional part with 
asymptotic relative frequency l /bm, where m is the length of the string. Partial 
overlaps of the string with itself are counted as distinct occurrences. Numbers 
exhibiting this property are termed normal to base b, and the fact that almost every 
real number has this property is known as The Normal Number Theorem for b-adic 
digits. 

Since Kac's use of orthonormality leads to such a simple proof of the case 
m = 1, b = 2, it is natural to ask whether his method can be adapted to give a 
direct proof of the Normal Number Theorem, at least for strings of binary digits. It 
turns out that this can be done by replacing Rademacher functions by their finite 
products, which themselves form an orthonormal system known as the Walsh 
functions. Kac presents them in an exercise, without any mention of their possible 
connection with normal numbers [2, p. 111. 

That discovery was made by Mendls-France [6], who showed how base 2 
normality can be characterized in terms of the Walsh functions. He then used this 
characterization to prove the Normal Number Theorem for binary digits. His 
approach, which, as he showed, generalizes to arbitrary integral bases b > 1, 
makes use of Haar measure, group characters, a generalized Weyl Criterion for 
asymptotically equidistributed sequences, and Birkhoff's Ergodic Theorem, applied 
to the dyadic map. 

We shall show, instead, how the orthonormality of the Walsh functions leads 
directly to a simple proof, a 12 Kac, of the Normal Number Theorem for binary 
digits. The only additional idea required is the well-known observation, due to 
Wall [lo] and used by Mendls-France, that a number is normal to base 2 if and 
only if the iterates, under the dyadic map, of its fractional part are uniformly 
distributed in the unit interval. Using this idea, our proof proceeds in the same 
spirit as one suggested by Kac-again, in the form of an exercise-for proving the 
classical theorem of Weyl [ I l l  on the equidistribution of the fractional parts of 
multiples of irrational numbers [2, p. 411. 

We can extend this approach to integral bases b > 1by defining, with Mendls- 
France [6], the b-adic Rademacherfunctions as 

r , (o)  = exp ( 2 r i  b,( w) 
) , fora l l  w ~ n , j ~ N ,  

where the bi are the b-adic coefficients of the point w, 

j=1 

and defining the b-adic Walsh functions as their power products. When b = 2, 
bj E {O,1) and Euler's formula ensures that the new definition of r, agrees with the 
old one. 

These b-adic Rademacher functions have mean zero, and all that is needed to 
establish their orthogonality (over the complex field) and further multiplicativity 
properties is the formula 

k k 

exp(il*,b,(o)) dw = j=1 on /'exp(ip,bj(w)) d o ,  

for suitable values of the real parameters and arbitrary values of k E N.But 
the validity of such a formula is guaranteed by the statistical independence of the 
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bj's, as Kac well knew [3], and its proof is virtually the same as one found in the 
opening pages of [2]. 

In Section 8, we give the details, and show how the reasoning used to establish 
the base 2 normality of almost every real number goes through in the case of 
general integral bases b. Once done, it remains only to collect the exceptional sets 
in order to arrive at a new proof of The Normal Number Theorem, in its full force: 
almost every real number is normal to every base. 

We then go on to examine more carefully the connection between the multi- 
plicativity of the b-adic Rademacher functions, understood as the vanishing of 
their mixed moments, and the statistical independence of the b-adic coefficients. 
Using a device of R6nyi7s [9] we are able to draw a remarkable conclusion-the 
two notions are entirely equivalent! Since the multiplicativity property can be 
established easily by elementary analysis, this yields a new proof of the indepen- 
dence of the b-adic coefficients. 

The same ideas can be applied to b-adic Walsh functions. While they them- 
selves are not statistically independent, we find that the ones whose indices form a 
geometrical progression made up of fixed multiples of powers of b are. The 
statistical independence of the b-adic Rademacher functions, and thus of the 
b-adic coefficients, follows as a special case. 

2. THE RADEMACHER FUNCTIONS. The functions rj are defined by (1.4). 
Since the binary coefficients a, satisfy 

1 
c j (  w) d o  = - for j t N,

2 

it follows that 

The statistical independence of the ai implies that the ri are also independent, 
and, since they each have mean zero, they satisfy the Multiplicativity Formula 

whenever the subscripts are distinct. Since r,? = 1for every j, it follows from (2.1) 
that the Rademacher functions form an orthonormal system on 0, that is, 

/O1rj(w)rk(w) dw = $k for j, k E N. 

3. KAC'S PROOF 121, [31. In view of (1.4), the limiting relation (1.3) is equivalent 
to the assertion that 

where 

is the difference between the number of heads and the number of tails in the first 
n tosses. 
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A direct computation using (2.1) and (2.2) shows that 

Consequently, 

and it follows from Beppo Levi's Theorem that 

This implies that 

which is clearly equivalent to (3.1). 

4. A VARIANT OF KAC'S PROOF. The preceding proof uses (2.1) up to fourfold 
products, which is evidently a stronger property than the mere orthonormality of 
the Rademacher functions expressed by (2.2). However, a proof of (3.1) that uses 
only the orthonormality of the rj (along with the uniform boundedness of their 
absolute values) can be based upon an argument employed by H. Weyl [ l l ]  in a 
similar context. 

The orthonormality (2.2) implies that, for each n E N, 

It follows that 

and, therefore, reasoning as before, 

R,2( w) 
+ 0 a.e., as n + -. (4.1)n 

Now, to each value of n, not a perfect square, there is a unique positive integer 
m, such that m i  < n < (m, + 1)'. Clearly, m, + - as n + w. In view of (3.2) 
and the fact that Ir, 1 = 1for all j, 

lR,l 5 lRm;l + lrm;+ll + ... + lr,l 5 lRm;l + 2m,. 

Dividing by m$ and using (4.1) with n2 replaced by m i  yields 

Since m: < n, (3.1) follows. 

5. SHIFT DYNAMICS. Define the binary shift (or dyadic map) T on R by the 
formula [2, p. 19 and p. 931 

T(w)  = 2w (mod l ) .  (5.1) 
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Then, when w is expressed in terms of its binary expansion (1.1), T(w) takes the 
form 

Making the convention that binary rationals have finite expansions, the uniqueness 
of the binary coefficients gives ai+,(w) = a j  0 T(w) for j E N. Iteration yields 

ai+k(w) = a j  0 T k ( w )  for j E N, k E NO, (5.2) 

and, in particular, 

~ , + ~ ( w )= a, 0 T ~ (  (5.3)W )  for k E NO. 

Now, a, is the indicator function of the interval [i,1). In view of (5.3) and the 
definition (1.2) of S,, 

S,,(w) = a,(w) + a, 0 T(w)  -k ... +a,  0 Tn- ' (w) .  

Thus, S,(w) counts the number of times that the orbit of w under T, that is, 

is found in [i,1) during the first n steps, starting from step 0. The Strong Law of 
Large Numbers can therefore be interpreted as saying that the relative time that the 
orbit of w occupies [1/2,1) tends to 1/2 as n + w, for almost all starting points 
w E a ,  in accordance with [2, p. 931. 

This dynamical interpretation of the Law of Large Numbers leads to a formula- 
tion of the Normal Number Theorem in an analogous way. Let 

" 1 7  " z , . . . ,  am (5.4) 

denote a string of binary digits of length m. Set 

and let 

Then I, is the 1-th binaiy interval of order m, and it consists of those points in fl 
whose binary expansion starts out with (5.4). With this enumeration, the lexico- 
graphic order of the strings (5.4) is expressed by the natural order of the intervals 
( 5 3 ,  in terms of increasing values of I. 

If we now denote by xI,the indicator function of the interval I,, 

is the average number of times the string (5.4) occurs among the first n -k m - 1 
binary coefficients of w, where overlappings count as multiple occurrences, and an 
occurrence is marked at the moment when the string starts to appear. Any real 
number whose fractional part is w will then be normal if, for each m E N, 
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where xI1is the indicator function of a generic binary interval I, of order m, and 
1/2" is its length. The Normal Number Theorem will, accordingly, be a conse- 
quence of the assertion that (5.6) holds a.e. on R for each such binary interval I,. 

6. THE WALSH FUNCTIONS. Kac introduces the Walsh functions, as follows. 
For each j E N, let 

where j, < j, < ... < j, are in N, be the unique expansion of the integer 2 j  in 
base 2. Then, for each j E N,define the Walsh functions by means of the formula 

wj(w) = rj,(w)rj2(w)... rj,(w) for w E a ,  (6.2) 

and set w, = 1. The Walsh functions thus constitute an enumeration of all the 
finite products of Rademacher functions. 

The Walsh functions, like the Rademacher functions, have a probabilistic 
interpretation in terms of coin tossing. For each j E N, wj represents the net gain 
of the gambler who bets one florin on the outcome that the total number of tails 
occurring on the tosses j,, j,, . . .,j, is even. 

Because of (2.1), the Walsh functions are orthogonal on R ,  while the identity 
Iw:l = 1 implies that they are orthonormal. For each m E N the 2" functions 
w,,wl,.  . .,w , , , ~ - ~are constant on binary intervals of order m. The range of any 
such function thus corresponds to a vector whose 1-th component is the value 
taken by the function on the interval I,. The orthogonality of the functions makes 
these vectors orthogonal and therefore linearly independent. It follows that the 
functions themselves are linearly independent. Consequently, any real-valued 
function f that is constant on binary intervals of order m can be written as a linear 
combination of the first 2" Walsh functions: 

where the weights Aj are the Fourier-Walsh coefficients of f :  

In particular, the function ,yI, can be written in such a form. In this case, 

while 

where the value of the k sign is such as to make sgn[hjwj] = + 1 on I,. 

7. PROOF OF THE NORMAL NUMBER THEOREM FOR BINARY DIGITS. In 
order to prove that (5.6) holds a.e, for any binary interval of the form (5.5) with 
m E N arbitrary, observe that (1.4) and (5.2) imply that 

Y ~ + ~ ( w )rj 0 T ~ ( w )for all w E R ,  j E N, k E NO, (7.1)= 
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so that, in view of (6.1) and (6.2), 

wZk,(w)= wj 0 T*(w) for all w E R ,  j, k E NO. (7.2) 

It is easy to verify that, for each j E N, the subset w,, wZj,. . . ,w2kj,.. . forms a 
multiplicative, orthonormal system, so the reasoning of the previous sections, 
applied to the sums wj(w) + w,,(w) + ... +w,,,-lj(w), instead of to the R,, shows 
that, for each fixed j E N, 

1 n - 1  

- x wj 0 Tk(  w) + 0 a.e. as n + m, 

k=O 

while, trivially, 
1 n-1 

Consequently, using (6.3) with f replaced by XI,, 

Since, by (6.4), A, = 1/2", (5.6) holds a.e., and the theorem is proved. 

8. GENERALIZATION TO b-ADIC DIGITS. Suppose that b > 1 is any integral 
base. Let the b-adic expansion of a generic point w E R be 

with the convention that b-adic rationals have finite expansions. Following [6], 
define the b-adic Radernacherfinctions 

2vi b,( w) 
rj(w) = exp( ) f o r a l l w t R , j t N .  

Thus, the rj assume values in the cyclotomic group of b-th roots of unity, and each 
root is taken on a subset of R having measure l/b. 

It follows at once that, for each j E N and any integer d, 

unless d = 0 mod b. It is also evident that, when d is in the range from 0 to b - 1, 

so the complex conjugates of powers of the rj are expressible as positive powers of 
r,. Accordingly, (8.3) holds also when r, is replaced by its complex conjugate, as 
could have been seen directly. 

As stated in the Introduction, we shall make use of the formula 
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for certain values of the real parameters pl and arbitrary k E N. The left-hand 
integral is one form of the multidimensional characteristic function (Fourier 
transform) of the first k b-adic coefficients, considered as random variables on R 
[2, p. 421, and it is their statistical independence that assures the equality of the 
two expressions. An elementary proof can be based upon Kac's demonstration of 
an analogous formula [2, p. 71. 

Indeed, let P denote Lebesgue measure on R. Then 

where the pj range independently over the set 0,1,.  . .,b - 1. Using the statistical 
independence of the bj's, the last expression becomes 

k k k 


which, in turn, reduces to 

n 
k b-1 

X e x ~ ( i P j P j ) ~ { b j ( w )  fI/ lexp(ipjbj(o))  dm, = Pj} = 
] = I  pj=o ; = I  0 

as required. 
Setting pj = 22ndj/b in (8.4), where the dj  are integers between 0 and b - 1, 

yields, in view of (8.3) and the defining equation (8.2), the Multiplicativity Formula 
for the b-adic Rademacher functions, 

ilr:l( co)r;z( W)  ... rfk( W)  d o  = o for all k t N ,  (8.5) 

unless all of the d's vanish, in which case the integral has the value 1.Recalling our 
comments about complex conjugates, we see that (8.5) continues to hold when any 
number of factors in the integrand are replaced by their conjugates. When b = 2, 
(2.1) can also be expressed in the present form, when k is suitably chosen and the 
exponents of the selected factors are set equal to 1, while the other exponents all 
vanish. 

To generalize the Walsh functions, take any j E N and make the partition 

b j  = d .  bJl + di2bJz+ ... +dj)Ja,
11 (8.6) 

where the d's are integers in the range 1, .  . . ,b - 1. Then set wo = 1 and define 
the b-adic Walsh functions 

This definition agrees with that of Mendls-France [6, p. 441. 
By (8.2) and (8.7), 1 wjI2 = 1for all j E No. It then follows that the b-adic Walsh 

functions satisfy the orthonormality relations 

/ O 1 ~ j ( ~ ) ~ k ( ~ ) d w  (8.8)= 4, for j, k E N ~ ,  

for, by (8.5) and (8.7), the value of the integral can be 1 only if wj and w, are 
products of the same b-adic Rademacher functions, and their corresponding 
powers agree. 
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Instead of the dyadic map (5.11, consider the b-adic map T(w) = bw (mod 1) 
and note that the uniqueness of the expansion (8.1) implies that bj+k(w)= 

bi o Tk(w) for j E N, k E NO. Thus, in view of (8.2), we also have 

r i + k ( ~ )= rj 0 T k ( w )  for all w E R ,  j E N, k E No, 

which is formally the same as (7.1). Consequently, by (8.7), 

and so, in view of (8.7) and (8.6), 

wbkj(w) = wj T ~ ( w )for all w E R ,  j, k E No, (8.10) 

which generalizes (7.2). 
Let m be any natural number, and take any string 

of m b-adic digits. Let I denote the b-adic interval of order m made up of those 
points in R whose b-adic expansion starts out with (8.11). Clearly, I has length 
l/brn. 

In view of (8.8), the first bm b-adic Walsh functions, w,, w,, . . . ,wbm-,, are 
linearly independent over the complex numbers, and their span consists of all 
complex-valued functions that are constant on b-adic intervals of order m. In 
particular, X, can be written as 

b"'-1 

XI(^) = C A,w;( w), w E 0 ,  (8.12) 
j = O  

where the weights A, are given by the formulas 

Here, qj is a b-th root of unity for each j, and 

It follows, again from (8.8), that, for each j E N, the functions 

w;, wbj, . . . ,wbkj,... (8.14) 

themselves form an orthonormal system on R .  Accordingly, in view of (8.10), we 
can establish that, for each fixed j E N, 

1 n - 1  

by appealing to the reasoning of Section 4, provided we replace the second 
moments of the R,(w) there by the second moments of the absolute values of the 
sums 

for j = 1, .  . .,bn'+' and n E N. A more involved calculation, using the fact that, 
for each k E N, 
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which follows from (8.9) and (8.10), and using, mutatis mutandis, the Multiplicativ- 
ity Formula (8.5), shows that the functions (8.14) are multiplicative and that 

so Kac's original argument of Section 3 can still be used. 
Once again, 

Consequently, because of (8.12) and (8.15), 
1 n-1  

just as in Section 7. But, in view of (8.13), A, = l /bm.  This proves that the relative 
frequency with which the string (8.11) occurs in the b-adic expansion of the 
fractional part of almost every real number tends to l /bm as n + m, and that is 
enough to establish the Normal Number Theorem. 

9. INDEPENDENCE AND MULTIPLICATMTY IN BASE 2. Returning now to 
base 2, observe that 

1 + Yrl 
-= 

2 , (9.1) 

whenever y, = f1, as noted by RSnyi [9, p. 1301. Consequently, for any j E N, 

where rj is the j-th Rademacher function and yj = 1. Since 

it follows that for any m E N 

RCnyi uses this formula in the following way. He expands the product in (9.3) to 
get 

Setting 

yj = 1 - 2aj  for j = 1 , .  . .,m ,where aj = 0 or 1, (9.5) 

then gives, in view of (1.2) and (9.3), an expansion of the indicator function x,, of a 
generic binary interval (5.5) of order m in terms of the first 2m Walsh functions, as 
in our (6.3) et seq., but without any recourse to orthonormality. 

RCnyi's approach can be used to motivate the introduction of finite products of 
Rademacher functions, and, therefore, of the Walsh functions, to deal with 
problems involving strings. However, it is also possible to employ these formulas in 
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another way to establish an unexpected connection between the multiplicativity of 
the Rademacher functions and their statistical independence. 

Recall that, in Section 2, we used the statistical independence of the Rademacher 
functions, together with the vanishing of their means, to justify the Multiplicativity 
Formula (2.1). However, as noted by Kaczmarz and Steinhaus, this formula can 
also be established directly by calculus, without appealing to the notion of 
statistical independence [4, p. 125f I. 

To do so, note first that (7.1) implies that 

where T is the binary shift given by (5.1). For fixed j, let 1 vary in the range from O 
to 21-I - 1, and denote by I, the 1-th dyadic interval of order j - 1. Since Ti-' is 
linear on each such I, and maps it onto f l ,  while the derivative of Ti-' on I, is 
2;-', the change-of-variable formula gives 

for each I,. Summing on 1 then yields 

c,(o )  d o  = o for j E N,  (9.7) 

as asserted at the start of Section 2. 
To arrive at the Multiplicativity Formula (2.1), we can now employ an argument 

used by Kac in a different connection [2, p. 271. Order the subscripts so that j, is 
the largest, and then write 

where the I, are the dyadic intervals of order j, - 1. Since the first k - 1 
functions rjl, r,,, . . . ,r,,-, are constant on each such interval, while, by (9.6) with 
j = j,, the integral of r .  over each one is zero, the integrals in the sum at right all 
vanish, and the ~ult i~ifcat ivi ty Formula follows. 

With this result in hand, we can establish the statistical independence of the 
Rademacher functions by proceeding in the following way. We integrate (9.2) over 
f l  and use (9.7) to find that for every j E N 

1 
P{rj = y;} = -2 whenever y, = 1. (9.8) 

Integrating (9.3) over f l  gives 

Now integrating (9.4) and making use of the Multiplicativity Formula along with 
(9.8) gives 

1 m 

P{rl = y,, . . . ,rm = ym} = -= n ~ { r ,= y,).
2" j = 1  

Since m E N is arbitrary, it follows that multiplicativity of the Rademacherfinctions 
implies their statistical independence. 
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The preceding reasoning is not limited to the case of Rademacher functions. As 
a further application, recall from Section 7 that the Walsh functions 

wj, w ~ ~ , .  (9.10). . ,w2kj,.. . 
are, for fixed j E N and varying k E N, multiplicative. When j = 1, these func- 
tions reduce to the Rademacher functions, as is evident from (6.1) and (6.2). 
Noting that they have mean zero, we can repeat our argument and conclude that 
the functions (9.10) are, in fact, statistically independent for every fixed j E N. 

If, finally, we make the substitution (9.5) in (9.9), and do the same in (9.8), then 
(9.9) becomes 

1 rn 

Thus, statistical independence of the binary digits is, itself, a direct consequence of 
multiplicatiuity of the Rademacher functions, and, therefore, the two notions are 
entirely equivalent. 

10. EXTENSION TO GENERAL BASES b. All the reasoning of the preceding 
section can be carried over to integral bases b > 1, once we find a suitable 
generalization of RCnyi's identity (9.1). To this end, let y and q be b-th roots of 
unity and consider the expression 

Since y = qb = 1, the quotient q/  y is also a b-th root of unity, and, therefore, 
the right-hand sum vanishes unless y = q. Consequently, 

and we have found the identity we need. 
Proceeding as before, for each j E N we get 

b - 1  

1 + C Yj 
b-d 

rj
d 

d = l  -
' b X{rj= 

and, since, by (8.31, 

integrating (10.1) gives 

This time, 
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Expanding the second product, we get an expression of the form 

1 
-(1 + sums of weighted power-products of the rj), (10.4)
b" 

where the weight assigned to each r: is yF-d.  Thus, integrating (10.3) over fl and 
using the Multiplicativity Formula (8.5) for the b-adic Rademacher functions, 
yields, in view of (10.21, 

Accordingly, multiplicativity of the b-adic Rademacherfunctions implies their statisti- 
cal independence, just as in the case b = 2. 

In Section 8, we introduced subsets of b-adic Walsh functions of the form 

for fixed values of j E N and varying k E N, and pointed out that they were 
multiplicative, in the sense that 

whenever the exponents are distinct. We can now show that they are statistically 
independent for each j E N by extending this formula in the following way. Let b' 
be the smallest positive integer such that w:' = 1. Then, as a consequence of (8.5) 
and the choice of b', the functions (10.6) are multiplicative in the extended sense 
that 

for every k E N, where the d's are restricted to the values O,1,. . . ,b' - 1and do 
not all vanish. It is thus possible to apply the foregoing reasoning to them, by 
replacing b by b' in the formulas above. This yields the statistical independence of 
the functions (10.6), and it generalizes (10.3, which, in view of (8.6) and (8.71, 
corresponds to the case j = 1. 

Returning now to (10.3) and setting 

for j = 1, .  . . ,m, with pj E {O, 1,.  . . ,b - 1}, we get, in view of (8.2) and the 
expansion (10.4), a formula for the indicator functions 

of b-adic intervals of order m, in terms of weighted power-products of the r,. The 
resulting formula is, clearly, comparable to our (8.3, et seq., and it can be used to 
motivate the introduction of power-products of the b-adic Rademacher functions, 
and, thus, of the b-adic Walsh functions, in order to deal with problems involving 
b-adic strings. 

It can also be employed to establish an equivalence between multiplicativity of 
the b-adic Rademacher functions and the statistical independence of the b-adic 
digits, generalizing the case b = 2 treated in the previous section. Indeed, it is 

124 STATISTICAL INDEPENDENCE AND NORMAL NUMBERS [February 



enough to make the substitution (10.7) in (10.5) to get 

Consequently, multiplicativity of the b-adic Rademacher functions implies statistical 
independence of the b-adic digits. 

Since there is no difficulty in extending to a general base b the argument used 
in the previous section to establish the Multiplicativity Formula for Rademacher 
functions, without having recourse to their statistical independence, we conclude 
that statistical independence of the b-adic digits is equivalent to the multiplicativity 
propeny (8.5) possessed by the b-adic Rademacherfunctions. 

One way to look at this result is as follows. Recall that, in Section 8, we derived 
the Multiplicativity Formula (8.5) from the formula 

k 	 k 

exp(ipjbj(o)) dw = n j1exp(iPjbj(w)) dw, 
j = l  0 

by setting pj = 22.rrdj/b, where the d j  are integers in the range from 0 to b - 1 
and j varies from 1 to k. As shown there, (8.4) is a direct consequence of the 
statistical independence of the functions b,. 

However, it is known that the validity of (8.4) for all real values of the 
parameters pj implies statistical independence of the otherwise quite arbitrary real 
functions bj, and Kac himself was among the first to prove it, by use of Fourier 
analysis [3]. 

In effect, what we have found is a refinement of Kac's sufficiency result, in a 
more algebraic setting, where the additive group of the reals has been replaced by 
the group of integers mod b. For, in restricting the b,'s to take integral values in 
the range from 0 to b - 1, instead of arbitrary real values, we have established 
that the validity of (8.4) for the narrow range of values of pj indicated above is 
already enough to ensure statistical independence of the bj's. 

The argument we have used cannot be regarded as new, even though its 
application to Rademacher and Walsh functions is. It is a reduction to the case of 
the cyclotomic group of a method suggested by RCnyi [9, p. 1711 for proving a more 
general result about the statistical independence of families of random variables, 
attributed to Kantorovic. RCnyi would, no doubt, have appreciated that the 
method he proposed could be applied, trivially, to the classical Rademacher 
functions in order to establish their statistical independence, but he seems to have 
been unaware, as was Kac, of Mendks-France's extension of the Rademacher 
functions to the b-adic case and, thus, missed the opportunity to apply his method 
there. 

The reader interested in learning more about normal numbers can consult 
Niven's Carus Monograph [7] and the treatise by Kuipers and Niederreiter [5], 
which contains an extensive bibliography. 
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.. . it did not take the Miloslavskys long to  find a pretext for 
arresting Matveev. That educated gentleman was foolish enough to 
be found with a book of algebra in his baggage, which was, 
naturally, taken to be a form of black magic. 

Even Nikita, when he heard of the arrest of his mentor, could only 
shake his head and remark: "He was asking for trouble. What did 
he want with such stuff anyway?" 

Edward Rutherfurd, Ritsska, The Nooelof Russia, Crown Publishers, Inc., 
New York, 1991,pp. 347-348. 
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