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The Velocity Dependence of Aerodynamic 

Drag: A Primer for Mathematicians 


Lyle N. Long and Howard Weiss 

1. INTRODUCTION. If you pick up nearly any elementary ordinary differential 
equations text or calculus text, you are likely to find a short section, or at least a 
problem, on the motion of a body subject to some type of drag force along with a 
calculation of the body's terminal velocity. Two favorite examples seem to be the 
motion of a projectile like a baseball and the motion of a skydiver/parachutist, 
both through the air. By a skydiver we mean a person falling without his parachute 
open. Most textbook authors model the motion of these objects using a drag force 
that depends linearly in the velocity. Unfortunately, the physical assumption about 
the linear dependence of the drag force on velocity is often incorrect, and thus the 
model's predictions are physically implausible. 

In particular it was surprising to see the faulty linear resistance model for a 
parachutist's velocity used in the popular calculus reform text by Hughes-Hallet, 
Gleason, et al. [9, p. 5151, since the reform movement prides itself on concern for 
realistic applications. The first edition of this text even supplied non-referenced 
observed data to fit its linear model. The authors state "The fact that there is good 
agreement between the observed and predicted data suggest that our assumption 
about the air resistance is reasonable." The recent second edition omits the table 
of observed data but not the flawed model. 

The purpose of this note is to explain the dependence of the drag force on 
velocity for a general mathematical audience and to present a few realistic models. 
Section 5 contains an interesting model (with a closed form solution) for re-entry 
of the space shuttle into the earth's atmosphere. 

Dimensional analysis is an important tool in aerodynamics and fluid dynamics, 
and can be used to obtain key results (5) and (6). To help give mathematicians 
some insight into the spirit of this important technique, we present in Section 6 an 
amusing application of dimensional analysis to prove the Pythagorean Theorem. 

The science of modeling drag is more physical and empirical than mathematical, 
and it relies on the results of many wind-tunnel experiments. There has been a 
significant amount of theoretical work in the engineering literature, but few of the 
results can be considered completely rigorous by mathematical standards. There 
are also large gaps in our understanding of basic properties of the Navier Stokes 
equation. In particular, there are important unsolved problems on the large-time 
existence and uniqueness of solutions of the Navier-Stokes equation in three 
dimensions. 

For detailed information on the aerodynamics and fluid mechanics pertinent to 
this paper, see [71, [S], [Ill, [12], [19], and [22]. 

2. THE BASIC EQUATIONS OF MOTION. Any body moving through a fluid 
such as water or air creates a drag force that tends to retard its motion. Such 
motion is usually described by the Navier-Stokes (nonlinear partial differential) 
equations. In elementary textbooks, the motion is always assumed to be one 

19991 127VELOCITY DEPENDENCE OF AERODYNAMIC DRAG 



dimensional, e.g., the ball is dropped and the skydiver has no horizontal movement 
and there is no wind. We observe in Section 4 that this assumption does not permit 
modeling of a modern parachute. Many (if not most) elementary mathematics 
textbook authors assume that the drag force for a baseball or skydiver/parachutist 
moving in air is proportional to the velocity u of the falling body, and at least one 
leading freshman physics text makes this assumption. This leads to the linear 
differential equation of motion 

where k, is a constant (whose physical meaning is rarely discussed), m is the mass 
of the body, and g is the gravitational constant. This linear differential equation 
can be solved easily to obtain the body's velocity as a function of time, beginning 
at rest: 

The terminal velocity is lim, ,,v,(t) = mg/k,. This terminal velocity is just the 
equilibrium solution of (1) and could have been obtained easily directly from (1) 
without explicitly solving the differential equation since physically, the terminal 
velocity corresponds to the motion when the drag force precisely equals the weight 
mg of the falling object. Any such simple model is necessarily a great simplification 
of the Navier-Stokes equations for the actual motion of a ball or skydiver. While 
this model may be correct for bodies that are falling in a vat of heavy oil or for tiny 
particles of dust or aerosol in air, it is grossly incorrect for large bodies falling 
in air. 

Calculations predict and experiments confirm that in air, the drag force on a 
ball or a skydiver/parachutist can be well approximated by a force that is 
proportional to the square of the velocity u2 (and not to the velocity v). The v2 
model for the drag force leads to the nonlinear equation of motion 

where k2 is a constant. This is a separable equation, which can be solved easily to 
obtain the body's velocity as a function of time, beginning at rest: 

The terminal velocity is lim,,,v2(t) = d=, which is just the equilibrium 
solution of (3) and could have been obtained easily directly from (3). 

Table 1 contains the experimentally determined terminal velocities for various 
objects moving through the air. There is a wide range of values for the terminal 
velocity of a skydiver because the terminal velocity strongly depends on his body 
position and is considerably higher (almost by a factor of two) during a head first 
nose dive or feet first dive than during a fall in the spread eagle belly-to-Earth 
position. The former positions are highly unstable and are difficult to maintain for 
more than a few seconds. In order to minimize the strong shock to the body at 
deployment, beginners typically reduce their free fall speed to about 50 m/s 
before deploying their parachute. 
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TABLE1. Approximate terminal velocities for various objects (from Table 9.1 in 141) 

Object Weight Terminal Velocity 
(kg) (m/s) 

iron ball (shot) 
Skydiver 

7.3 
72.6 + 19 (equipment) = 91.6 

145 
45 to 80 + 

Football 0.41 45 
Baseball 0.15 42 
Golfball 0.05 40 
Softball 0.18 80 

Tennis ball 0.06 36 
Basketball 0.6 20 

Ping-Pong ball 
Parachutist (round canopy) 

0.003 
72.6 + 19 (equipment) = 91.6 

9 
5 

3. SMALL AND LARGE REYNOLDS NUMBERS FLOWS. In general, the drag 
force depends on many factors including the density and viscosity of the fluid, and 
the geometry, surface material, surface regularity, and velocity of the body. The 
dimensionless Reynolds number of the fluid plays a key role in determining the 
drag force, and is defined by 

R = -pdu or R = -du 

E*. V 

where p is the density of the fluid, u is the velocity of the body in the fluid, p is 
the viscosity of the fluid, v = p/p, and d is a characteristic length (see Table 2). 
This characteristic length could be a radius, a diameter, a chord length, a body 
length, etc. depending on what aspect of the problem one is studying. Note that a 
slowly moving object may have a large Reynolds number if the object is large 
or the viscosity is small. Turbulent flows are typically associated with large 
Reynolds numbers, while laminar flows are typically associated with small 
Reynolds numbers. 

TABLE2. Typical Reynolds numbers for various objects moving in air 

Object Characteristic Length Typical Reynolds Number 

Submarine Length 300,000,000 
Small aircraft Chord 5,000,000 
Parachutist Diameter 2,500,000 

Skydiver Diameter 1,000,000 
Baseball Diameter 250,000 

Model airplane Chord 50,000 
Butterfly Chord 7,000 

Dust particle Diameter 1 

If the Reynolds number is small, meaning R << 1, the Navier-Stokes equation is 
considerably simplified and the equation of motion reduces to a linear partial 
differential equation. Strictly speaking, one should assume R << 1, but the approx- 
imation is often reasonable for R = 1. Stokes analyzed this linear differential 
equation and found the following formula for the drag force, FD, on a sphere of 
radius r moving in the fluid [21, p. 2171: 

FD= ~ T ~ Y U .  ( 5 )  
This expression is exact in the limit as the Reynolds number goes to zero. Thus, 
the drag force is proportional to the velocity and the radius of the sphere. Since 
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the fluid density does not appear in the linear partial differential equation, the 
form of formula (5) can also be obtained with simple dimensional arguments: if the 
drag force depends only on p ,  r, and u, one shows the only function of these 
quantities that has the units of force is FD = Cpru, where C is a constant. 
A rigorous argument can be based on the Pi theorem of Vaschy and Buckingham 
[I, p. 421, Dl, Dl. 

Formula (5) can be extended to flows with non-zero Reynolds number. Using 
techniques in the theory of matched asymptotic expansions, the Stokes approxima- 
tion (5) can be improved [17] to an asymptotic expansion of the form 

3 9+ - R ~  log R + O ( R ~ )
40 

Table 3 contains the values of p and v for oil, water, and dry air at 100' F. It is 
known that the viscosity of oils increases rapidly with decreasing temperature. 

TABLE3. Typical values of p and v at 100 degrees F 

water 0.686 X 0.691 X 

dry air 0.19 x 1.9 x lo-5 

It has been determined experimentally that (5) is valid for Reynolds numbers 
R < 1 and that a similar dependence occurs in this range of R for bodies with 
other shapes, i.e., the drag force 

F, - constant X pu, 

where the constant is independent of u. This can be rewritten as FD = ku, where 
k = constant X p (see (1) and (2)). From Table 2 we see that baseballs and 
skydivers/parachutists have R >> 1. 

There are some interesting implications of low Reynolds number flows in 
biology. In particular, [20] describes the role of terminal velocity in pollen disper- 
sal, while [6] answers the question "Why are there so few aerial plankton?" by 
explaining how high atmospheric terminal velocities confound the ability of turbu- 
lence to keep organisms afloat. 

Although there are interesting flows where the drag depends linearly on 
velocity, they are typically associated with small objects such as raindrops, dust 
particles, etc. The book [14] contains a discussion of modeling falling raindrops 
over a wide range of Reynolds numbers. 

When the Reynolds number is large, but not too large, the flow may remain 
laminar. These cases can be studied using the Navier-Stokes equations in the thin 
boundary layer around the body where this flow is assumed to be laminar. The 
resulting equations are called Prandtl's equations [ l l ]  and one can conclude that 
(at least for a certain range of R) the drag force is independent of the viscosity. 
One then uses facts about the Bernoulli equation or dimensional analysis to 
conclude that 

F, = constant x p A ~ 2 ,  (6) 
where the constant depends only on the shape and surface characteristics of the 
body. Numerous experiments in wind tunnels and in aircraft flight tests during the 
past 80 years have verified that this formula is valid for Reynolds numbers between 
3 x lo2  and 3 x lo5. 
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For flows in the range of Reynolds numbers, it is customary to introduce the 
drag coeficient, C,, which is the dimensionless quantity defined by 

With this definition and (6), we have C, = constant, i.e., the drag coefficient 
depends only on the shape and surface characteristics of the body and the 
Reynolds number. Thus in (3) and (4), the constant k = $c,pA.  Furthermore, the 
dynamicpressure q = plays a fundamental role in aerodynamic theory [7]. For 
instance, when the space shuttle Challenger exploded, it was operating in a high 
dynamic pressure regime. Very fast aircraft need to operate at high altitude (where 
p is relatively small) to avoid excessive dynamic pressure and catastrophic damage 
to the aircraft. 

For smooth spheres having Reynolds numbers in the range l o3  to 3 X lo5, the 
drag coefficient is approximately 0.47, while for Reynolds numbers greater than 
3 X lo5, the drag coefficient is approximately 0.20 (see Figure 1). The text [22] 
contains a good exposition of sphere drag for R between 1and lo6. 

Figure 1. Drag coefficient C, for a sphere as a function of Reynolds number R (from Figure 34 in 1111) 

It follows from (4) and (7) that the terminal velocity for a sphere falling in air is 
approximately r 

where W is the weight of the sphere, p is the density of air at sea level, and r is 
the radius of the sphere. The density p is a complicated function of temperature, 
humidity, and pressure (which varies with altitude) so this equation is only an 
approximation. 

The motion of a baseball, with its rough surface, is actually considerably more 
complicated to model accurately than the motion of a smooth sphere [13]. 

4. SKYDMNG AND PARACHUTING. We now discuss the motion of a skydiver 
and a parachutist; useful technical references are [S], [lo], [IS], and [16]. Just as for 
a sphere falling in air, the terminal velocity for a skydiver is approximately 

(8) 
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where W is the combined weight of the skydiver and parachute, A is the effective 
cross-sectional area of the skydiver, and the density of air is p = 1.225 kg/m3. 
Solving for the drag coefficient C,  we obtain 

2W W 

where q is the dynamic pressure corresponding to terminal velocity. 
If a 72.6 kg skydiver carrying a 19 kg load (91.6 kg = 867 N) attains a terminal 

velocity of 49 m/s (in the belly-to-earth position) and has a cross-sectional area of 
0.56 m2, it follows from (9) that C, = (2 X 867)/(1.225 X 0.56 X 492) = 1.05. 

Moreover, if our skydiver attains a terminal velocity of 67 m/s (in the head 
down or feet down position) and has a cross-sectional area of 0.2 m2 in this 
position, it again follows from (9) that C,  = (2 x 867)/(1.225 X 0.2 X 67') = 1.57. 
Actually, even if the skydiver could maintain the head down or feet down position 
over a long period of time, his rate of descent would continually slow due to the 
increasing density of air at lower altitudes. 

In the 1960s, a 72.6 kg beginner sport parachutist might have used a circular 
parachute with a canopy area of 74.8 m2, and would have carried about a 22.7 kg 
load (95.3 kg = 934 N) [15].The parachute would have had C,  = 0.8. It follows 
from (8) that the terminal velocity for the parachutist is approximately [(2 X 
934)/(1.225 X 0.8 X 74.7)11/' = 5.1 m/s. Many measurements have confirmed that 
this prediction is quite a close approximation to the actual terminal velocity. 

The sport parachutes used today bear little resemblance to the old classical 
round canopies, although the latter are still preferred by the military. The 
military's round canopies also have a relatively small area, which results in much 
harder landings than with modern sport canopies. Today, nearly all jumpers use 
either square (actually rectangular) or elliptical canopies, made from a non-porous 
material. When open, these canopies act like an airplane wing or an airfoil, and 
generate lift throughout the flight; they do not work by drag alone and are more 
like gliders than umbrellas. In addition, these modern square or elliptical canopies 
actually have brakes that the parachutist can apply close to the ground to achieve a 
gentle landing. Because of the lift that these canopies generate, their motion can 
not be modeled solely by the simple u2 drag force model with the force parallel to 
motion. 

However, we can obtain a reasonable model of a modern parachute by adding 
an extra term to (3) corresponding to the lift generated by the canopy. These are 
the same equations that are used to model flight of an unpowered airplane (a 
glider) or re-entry of the space shuttle into the earth's atmosphere. The force due 
to lift, F,, is proportional to the square of the velocity, but now it is important to 
consider the horizontal component of motion-thus the new model is necessarily 
two dimensional and (3) is replaced by a pair of coupled nonlinear equations [7]. 

It is convenient to work in a special (rotating) coordinate system centered on 
the center of the earth. Letting V denote the tangential component of velocity for 
the unpowered aircraft, the equations of motion are 

where 6 denotes the climb angle, r, is the radial distance of the aircraft to the 
center of the earth (which we approximate by the radius of the earth), 

FL = i C Lp A ~ 2 ,  F, = i C DpAv2 ,  
C, is the coefficient of lift, and C, is the coefficient of drag (see Figure 2). 
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Wcos e / E \ '  

Figure 2. Forces on an unpowered aircraft 

In general, even for a parachute, the equations in (10) do not have a closed form 
solution. However, there exists a closed form solution in one remarkable case that 
models re-entry of the space shuttle into the earth 's atmosphere. We discuss this 
example in Section 5. 

5. RE-ENTRY OF THE SPACE SHUTTLE. The following model provides a 
reasonably accurate model for a lifting body, such as the space shuttle on re-entry 
into the atmosphere, with a closed form solution. This remarkable example should 
be much better known to mathematicians and can easily be presented in a first 
course on differential equations. 

During much of the time during the space shuttle's re-entry, its velocity is 
approximately perpendicular to a line connecting the shuttle to the center of the 
earth, although at some instants the angle is quite large. In this model we assume 
that this is the case for all time. It then follows from (lo), using 6 = 0, that the 
tangential velocity V of the shuttle satisfies 

where FL= lift force = C, pV2A/2, FD= drag force = CD pv2A/2, and r, = 

radius of the earth. 
For the space shuttle, it is reasonable to assume that CL = 0.5, CD = 0.5, 

A = 372 m2, and W/(AC,) = 100. Over the flight envelope of the space shuttle, 
the quantity FL/FD= CL/CD varies from about 1.0 to 1.8, and at high speeds it is 
roughly 1.0; for this simple example we approximate it by the constant 1.0. 

We can rewrite (11) as 

where Vc = &. Dividing these equations gives the single equation 
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Since FD/FL= CD/CL, we obtain the separable equation 
dV 

which can be integrated to yield the closed form solution 

t + arctanh (21) 
t + arctanh [$] / , 

where V(0) = V,. Actual space shuttle flight test data [51 show that the velocity 
predicted by this simple model is reasonably accurate even though it is based on 
many simplifying assumptions. 

One can use (12) to estimate the maximum acceleration experienced by the 
space shuttle upon re-entry. 

6. PROOF OF THE PYTHAGOREAN THEOREM USING DIMENSIONAL 
ANALYSIS. We follow [I, p. 491 and give an insightful application of dimensional 
analysis to prove the Pythagorean theorem. 

The area A of a right triangle is determined by its hypotenuse c and, for 
definiteness, the lesser of the acute angles 4: A = f(c, 6). Since the units of area 
are the square of units of length, dimensional analysis gives A = c2g(+). The 
altitude perpendicular to the hypotenuse (see Figure 3) divides the basic triangle 
into two right triangles that are similar to it, and whose hypotenuses are the sides 
a and b of the original triangle. Their areas are A, = a2g(+) and A, = b2g(+)., 
But A = A ,  +A,,  and thus c2g(+) = a2g(+) + b2g(+). Hence a2  + b2 = c2. . 

Figure 3. Right triangle 

7. CONCLUSION. We have discussed models of motion for objects with small 
Reynolds numbers (R < 1) and for large Reynolds numbers (R > = 100). It is 
quite difficult to model the motion of most objects with Reynolds numbers in the 
intermediate range. The models we have discussed are quite popular with students 
and impress upon them, early in a differential equations course, the power of 
differential equations to model non-trivial physical phenomena. We applaud the 
trend in the new generation of calculus and differential equations texts to discuss 
more physical and biological models, and to make model building a major focus of 
the course. However, textbook writers and instructors should strive to present 
models based on correct physical or biological principles. 
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