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NOTES 

Edited by Jimmie D. Lawson and William Adkins 

Magic "Squares" Indeed! 

Arthur T. Benjamin and Kan Yasuda 

1 INTRODUCTION. Behold the remarkable property of the magic square: 

61g2 + 7532 + 2942 = 8162 + 3572 + 4922 (rows) 

6722 + 1 5 9 ~+ 8342 = 2762 + 9512 + 43g2 (columns) 

6542 + 1 3 2 ~+ 8792 = 4562 + 2312 + 97g2 (diagonals) 

6392 + 1 7 4 ~+ 8522 = 9362 + 4712 + 25g2 (counter-diagonals) 

6542 + 79g2 + 2 1 3 ~= 4562 + 8972 + 312~  (diagonals) 

6932 + 714~+ 25g2 = 3962 + 417~+ 8522 (counter-diagonals). 

This property was discovered by Dr. Irving Joshua Matrix [3], first published in 
[5] and more recently in [I]. We prove that this property holds for evely 3-by-3 
magic square, where the rows, columns, diagonals, and counter-diagonals can be 
read as 3-digit numbers in any base. We also describe n-by-n matrices that satisfy' 
this condition, among them all circulant matrices and all symmetrical magic 
squares. For example, the 5-by-5 magic square in (1) also satisfies the square- 
palindromic property for every base. 

We must be careful when we read these numbers. The base 10 number 
represented by the first row of (1) is 1 7 .  lo4 + 24.  lo3 + 1. 102 + 8 . 1 0  + 15 = 

194195. The base 10 number based on the first row's reversal is 158357. 

2 SUFFICIENT CONDITIONS. We say that a real matrix is square-palindromic if, 
for every base b, the sum of the squares of its rows, columns, and four sets of 
diagonals (as in the previous examples) are unchanged when the numbers are read 
"backwards" in base b. We can express this condition using matrix notation. Let 
M be an n-by-n matrix. Then the n numbers (in base b) represented by the rows 
of M are the entries of the vector Mb,  where b = (bn-l ,  bn-2 , .  . .,b, and T 
denotes the transpose operation. The sum of the squares of these numbers is 
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Next, the n numbers represented by the rows when read "backwards" are the 
entries of MRb where the n-by-n reversal matrix R = [rij] has rij = 1if i + j = n + 
1, and rij = 0 otherwise. Note that RT = R-' = R. The sum of the squares of 
these numbers is 

Hence a sufficient condition for the rows of M to satisfy the square-palindromic 
property is simply R(MTM)R = MTM. Matrices A that satisfy RAR =A are 
called centro-symmetric [6]:a i j  = a,+ ,,+,-j .  Matrices A that satisfy RAR =AT 
are called persymmetric [4]: a i j  = a,+,-j, It is easy to see that symmetric 
matrices that are centro-symmetric must also be persymmetric. Since MTM is 
necessarily symmetric, our sufficient condition says that MTM is centro-symmetric, 
or equivalently, that 

MTM is persymmetric. 

The square-palindromic condition for the columns of M is the square-
palindromic condition for the rows of MT. Hence it suffices to require that 

MMT is persymmetric. 

For the first set of diagonals, we create a matrix M with the property that each 
column of M represents a diagonal starting from the first row of M. To do this, we 
introduce two other special square matrices. Let Pk= [pi,] denote the n-by-n 
projection matrix whose only non-zero entry is pkk= 1. Notice that pT= P ,  and 
P k M  preserves the kth row of M but turns all other rows to zeros. Let S = [sij] 
denote the n-by-n shift operator where s,, = 1 if i - j = 1 (mod n), s . .  = 0 

1 J 
otherwise. 

The following properties of S are easily verified: Sn  = In,  S-' = ST= RSR, and 
Msk shifts the columns of M over "k steps to the left". Now define 

Hence the i-th diagonal of M, starting from the first row becomes the i-th column 
of M. By the column condition, these diagonals satisfy the square-palindromic 
property if the (i, j )  entry of MATequals its (n + 1 - j, n + 1 - i)  entry. 

We have 

It follows that AMT has the same (i, j )  entry as MS'-jMT, and the same 
(n + 1 - j, n + 1 - i)  entry as well; if Msi-jMT is persymmetric, then these 
entries are equal. Consequently, these diagonals obey the square-palindromic 
property if 

MskMT is persymmetric for k = 1, . . . ,n. (2) 

Conveniently, (2) also ensures that the counter-diagonals starting from the first 
row satisfy the square-palindromic property. This can be seen by mimicking the 
preceding explanation with M = Cy=,PiMS-(i-l), whereby AMT has the same 
(i, j )  and (n + 1 - j, n + 1 - i)  entry as M S I - ~ M ~ .For the other diagonal and 
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counterdiagonal, we obtain similar results [7], which we summarize in the following 
theorem: 

Theorem 1. A square matrix M has the square-palindromic property if the following 
matrices are all persymmetric: 

1. M ~ M ,  
2. M M ~ ,  
3. MskMT,for k = 1, .  . . ,n, and 
4. M ~ S ~ M ,fork  = 1, .  . .,n. 

3. SQUARE-PALINDROMIC MATRICES. Next we explore classes of matrices 
that are square-palindromic. We say that a square matrix A is centro-skew-symmet-
ric if RAR = -A, that is, a i j  + a,+,-i , n + l - j  = 0. 

1 2 3 4  
5 6 7 8  

b 

4 3 2 1 Centro-Skew-Symmetric
Centro-Symmetric 

Theorem 2. Every centro-symmetric or centro-skew-symmetric matrix is square-
palindromic. 

Proofi If M is centro-symmetric or centro-skew-symmetric, then the relations 
RM = kMR and R(S,)R = s - ~ensure that M satisfies the conditions of 
Theorem 1. 

The theorem is not at all surprising since the collection of rows, columns and. 
diagonals of M read the same backwards and forwards. The next class of matrices, 
however, satisfies the conditions in a non-obvious way. 

We say that A is circulant if every entry of each "diagonal" is the same, i.e., 
a . .  = a,, if i - j = k -/ mod n or simply SAS-I = A .  We say that A is

' I  
(- 1)-circulant if SAS = A. 

Circulant 

Notice that the circulant and (- 1)-circulant property is preserved under trans-
posing. It is easy to show that the product of two circulant matrices or two 
(- 1)-circulant matrices is circulant, while the product of a circulant and (- 1)-cir-
culant matrix is (- 1)-circulant. Note that S is circulant, R is (- 1)-circulant, and 
that all circulant matrices are persymmetric since a i j  and + l - i  lie on the 
same diagonal. Consequently, if M is circulant or ( - 1)-circulant, the matrices 
MTM, MMT, MskMT,and MTskMare a11 circulant, and thus persymmetric. From 
Theorem 1, it follows that 

Theorem 3. Evely circulant or (- 1)-circulant matrix is square-palindromic. 
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Notice that four of the six square-palindromic identities are not obvious, but 
two of the diagonal sums are completely trivial! 

4. MAGIC AND SEMIMAGIC SQUARES. A semi-magic square with magic con-
stant c is a square matrix A in which every row and column adds to c. Using 
matrix notation, this says that AJ  = cJ = JA, where J is the matrix of all ones. If 
the main diagonal and main counter-diagonal also add to c, then the matrix is 
called a magic square. Circulant and (- 1)-circulant matrices are always semi-magic, 
but are not necessarily magic. 

A magic square A is symmetrical [2] if the sum of each pair of two entries that 
are opposite with respect to the center is 2c/n, that is a i j  + an+,- , ,n+,- j  = 2c/n. 
Notice that a semimagic square with this prowsty is magic. 

Like the example below, magic and semi-magic squares do not necessarily 
satisfy the square-palindromic property. 

[i : i l  
Semi-Magic but not square-palindromic 

However, 

Theorem 4. Evey symmetrical magic square is square-palindromic. 

Proof: The trick is to notice that if M is a symmetrical magic square with magic 
constant c, then M = M, + cJ/n, where Mo is a symmetrical magic square with 
magic constant 0. But this implies that M, is centro-skew-symmetric. Therefore 
M, is square-palindromic and satisfies the conditions of Theorem 1. Thus, since 
M& and J are persymmetric, it follows that M T M  = (M, + C J / ~ ) ~ ( M ,+ cJ/n) 
= M& + c2J/n is also persymmetric. Hence M satisfies condition 1of Theorem 
1. To verify condition 3 (the other cases are similar), notice that 

is persymmetric for k = 1,.. . ,n, since M, satisfies condition 3 of Theorem 1. 
Although not all magic squares are square-palindromic, it is easy to see that all 

3-by-3 magic squares are symmetrical. Consequently, we have 

Theorem 5. All 3-by-3 magic squares are square-palindromic. 
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An Elementary Proof of Binet's Formula 
for the Gamma Function 

Zoltin Sasvari 

The present note presents an elementary proof o f  the following important result o f  
J .  P. M .  Binet [3, p. 2491. 

Theorem 1. For x > 0 we have 

where 

Here r denotes the gamma function defined by 

r ( ~ )  
m 

= 1tx-le-' dt. 
0 

Since lim, ,,O(x) = 0, from (1) we immediately obtain Stirling's formula 

Binet's formula can also be used to prove a more precise version of Stirling's asymptotic 
expansion 

where the BZj's denote the Bernoulli numbers defined by 

For, by problem 154 in Part I, Chapter 4 of [2], the inequalities 
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