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An Elementary Proof of Binet's Formula 
for the Gamma Function 

Zoltin Sasvari 

The present note presents an elementary proof o f  the following important result o f  
J .  P. M .  Binet [3, p. 2491. 

Theorem 1. For x > 0 we have 

where 

Here r denotes the gamma function defined by 

r ( ~ )  
m 

= 1tx-le-' dt. 
0 

Since lim, ,,O(x) = 0, from (1) we immediately obtain Stirling's formula 

Binet's formula can also be used to prove a more precise version of Stirling's asymptotic 
expansion 

where the BZj's denote the Bernoulli numbers defined by 

For, by problem 154 in Part I, Chapter 4 of [2], the inequalities 
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hold for each nonnegative integer N. From j !  = dt and the definition of 8 we 
immediately obtain 

2N B2j n !  2N+ 1 

< log 
Bzj '2j(2j  - l)n2j-'  < ' 2j(2j  - 1 ) ~ 2 j - l]= I  ( n / e ) " K  j = I  

In this MONTHLYseveral derivations of Stirling's formula and asymptotic expansion 
have been published. We mention here only the most recent [ I ] .  

Toprove Binet's formula, we define the function cp by the equation 

so that 

Binet's formula is equivalent to 8 (x )  = cp(x).Weprove this equality by showing that 8 
and cp both satisfy a certain difference equation and that o( ; )  = cp(3). 

Ourfirst lemma tells nothing new; we present a proof for the sake of completeness. 

Lemma 1. For all x > 0 and a > -x we have 

/om ,-xt - ,-(.+fl)t 

dt = log 1 + - . 
t i 3 ( 3 )  

Proofi Denoting by f ( x )  and g ( x ) the left and right hand sides of  (3),respectively, 
we have lim,, ,f(x) = lirn,, ,g(x) = 0 and f l ( x )  = gl(x).Consequently, f ( x )  = 

g ( x )for all x > 0. W 

Lemma 2. For all x > 0 we have 

cp(x) - cp(x + 1) = 8 ( x )  - O(x + 1) = x + - log 1 + - - 1. ( 4 )i :I i 
Proofi Denote by g (x )  the right-hand side of  (4). That cp(x) - cp(x + 1) = g(x )  
follows immediately from (2)by using the equation T ( x  + 2) = ( x  + l )T (x  + 1). 
To prove the statement about 8, first note that lim,, ,O(x) - 8(x + 1) = 

lim,,,g(x) = 0. Moreover, 

m e - x t  - e - ( ~ + l ) t  e - x t  + e - ( x + l ) t  

O t (x )- O1(x+ 1) = / -
2 

dt. 
0 t 

Applying (3),we obtain 

8 ' ( x )  - O1(x+ 1) = log 

Since the limits at w and the derivatives are equal, g (x )  = O(x) - O(x + 1). 

Remark. Differentiating under the integral sign in the previous proofs can be 
avoided by replacing $ by /,"e-" ds and then using Fubini's theorem. 
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Lemma 3. p(3) = O(3) = $ - ;log2. 

Pro08 Since r(i)= 3 6 ,  (2) yields p(3) = 3 - ;log 2. 
As to ~ ( i ) ,we follow an idea of A. Pringsheim [3, p. 2491. By an obvious 

substitution, 

Using this, we obtain 

1 
= Lm[ e-Tt;  e- t  1 1 d e-tt - e - t  e-tt - ,-t 

- = / - -
2 t 0 dt ( t ) - 2t dt. 

Applying (3) we obtain the desired result. 

Proof of Theorem I :  We have to show that cp(x) = O(x). By (4), O(x) -
O(x + 1) = p(x) - p(x + 1). Applying this to x, x + I , .  . .,x + n - 1 and sum-
ming these equations, we see that O(x) - O(x + n) = p ( ~ )- p(x + n). Since 
limn,,O(x + n) = 0, we immediately obtain 

Next we show that the function h is decreasing. If 0 I y I x and 0 Ip r 1 then 

for all n 2 1. Noting that 0 I tel-t I l ( t  2 0) and using the definition of p, we 
conclude that 

e '~(x+n)- e ~ ( ~ + n )2 (Jf - Jy-tn)e~(l). 

Taking the limit as n -+w, we obtain eh(")- eh(Y)-< 0, i.e., h(x) 5 h(y). Since the 
function h is also periodic with period 1, it must be constant. Applying (5) and 
Lemma 3, we obtain that h(x) = h( i )  = 0 for all x > 0. 
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