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A Simple Proof of Rankin's 

Campanological Theorem 


Richard G. Swan 

Change ringing is the traditional English method of ringing church bells. The basic 
idea is to ring a set of bells in all possible orders (the changes) with no repetition 
until the initial position recurs. The sequence of changes is usually grouped into 
blocks, known as 'leads,' of a standard form, and one considers the sequence 
consisting of the last change in each lead (the 'lead ends'). Each lead end is 
obtained from the previous one by a permutation depending on the type of lead, 
and one tries to choose the sequence of leads so that all possible changes occur. 

The mathematical problem involved in doing this can be formulated more 
generally as follows. Given a finite group G with a set of generators, E, one 
attempts to enumerate the elements of G as x,, . . . ,x, (with n = IG 1) in such a 
way that for each i, xi+, = xiei for some ei in E (including x, = x,e,). Many 
explicit solutions have been given in particular cases, often by quite ingenious 
methods [5], [6], but few general results seem to be known about the possibility of 
constructing such a sequence. Aside from the obvious requirement that E gener-
ates G, the only necessary condition known to me is a theorem of Rankin [4], 
which generalizes an earlier result of W. H. Thompson for a special case. This 
theorem asserts that if E = {a, b} has at most 2 elements and if c = ab-' has odd 
order, then IG: ( a )  1 and IG: ( b )  1 must be odd. In fact, Rankin proved a more 
general result in which E is not required to generate G. 

By a cyclically ordered set I mean a sequence x,, . .. ,x, of distinct elements, two 
such sequences (x,, . . . ,x,) and (y,, . . . ,y,) being regarded as the same if they 
differ by a cyclic permutation, i.e., m = n and yi = xi+, for some fixed k (indices 
being taken mod n). If G is a finite group and E is a subset of G, an E-cycle in G 
is a cyclically ordered subset x,, . . .,x, of G such that the ratios x;'xi+, all lie in 
E (including x i  'x,). 

Theorem 1[41. Let E = {a, b} be a subset of a finite group G. Suppose that G has a 
partition into r disjoint E-cycles. If c = ab- ' has odd order, then r - I G: ( a )  l = I G: 
(b)l mod2. 

Applications to change ringing may be found in [4]. Some history of Thompson's 
work is given in [2] and [I]. Our objective is to give a very simple proof of the 
theorem. With no more effort we can actually prove a somewhat more general 
result. Let X be a finite set and let E be a set of permutations of X. An E-cycle in 
X is a cyclically ordered subset x,, . . . ,x, of X such that for each i = 1,. . . ,n, we 
have xi+, = ai(xi) for some ai in E. As always, the indices are taken mod n so 
that x, = a,(x,) also. 

Theorem 2. Let E = { a ,  p}  where a and P are permutations of a finite set X hauing 
k and 1 cycles, respectiuely. Suppose X has a partition into r disjoint E-cycles. If 
y = P-'a has odd order, then r = k = 1 mod 2. 
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Theorem 1 is an immediate consequence of Theorem 2. We let X = G and 
define a and P to be right multiplication by a and b, i.e., a (x )  =xu and 
P(x) = xb. Then y(x) = xc so y has the same order as c and the cycles of a and 
p are just the left cosets of the subgroups ( a )  and (b) .  Therefore k = IG: (a) l  
and 1 = IG: (b)l .  

Remark. There are two obvious partitions of X into E-cycles, namely the cycles of 
a and the cycles of P. The point of Theorem 2 is thus that the parity of r is the 
same for all partitions into E-cycles if y has odd order. 

For the proof, observe that there is a 1-1 correspondence between partitions of 
X into disjoint cyclic subsets and permutations .rr of X, the cyclic subsets being the 
cycles of .rr. These cycles are E-cycles if and only if for each x in X we have 
.rr(x) = a,(x) for some a, in E. The parity of the number of cycles is related to 
the sign of .rr by the following fact. 

Lemma 3 [3, App. Al. Let .rr be a permutation of n elements having r cycles. Then 
sgn(.rr) = (- On+'. 

In fact, if .rr has p even cycles and q odd cycles, then sgn(.rr) = (-1)P, 
r = p  + q ,  and n = q m o d 2 .  

In the situation of Theorem 2, let P = {x E XI .rr(x) = a(x)} and Q = {x E 

XI .rr(x) = P(x)}. Then X = P U Q. Let r = ~- ' . r r .Then r acts as the identity on 
Q, and P - Q = X - Q is stable under 7, which clearly agrees with y on it. So 
r1P = ylP and rlQ = 1.Therefore r has odd order since y does, so sgn(r) = 1.It 
follows that sgn(.rr) = sgn( P )  and Lemma 3 shows that r = 1mod 2. Similarly, 
r = k mod 2. 

Remark. We can also get some information if y is not assumed to have odd order. 
Note that P n Q = F, the set of fixed points of y. Since P and Q are stable under 
y, they are determined by their images P = P/( y ) and c = Q/( y ) in X = 

X/( y ). Lemma 3 shows that sgn(r) = (- l)d, where d = I PI + /PI. Since sgn(.rr) 
= sgn( p)sgn(r), we see that in all cases r = 1 + lPl + IPlmod2. Similarly, r = k 
+ lQl + lelmod2. In the situation of Theorem 1, IPI = I ( c )  1 . IPI so if c has 
even order we get r = 1 + IPlmod2 and similarly r = k + Iclmod2. It is also easy 
to see that, in the situation of Theorem 2, the possible partitions of X into 
E-cycles are in 1 - 1correspondence with subsets of X that contain F = F :  We 
let c = ( x  - P )  u F,  let P and Q be the inverse images of P and in X, and 
define .rr to be a on P and P on Q. 

Examples. The fact that P and Q are stable under y was Thompson's key 
observation on which all proofs of the theorem are based. It has no analogue if E 
has more than 2 elements and it is not at all clear whether there is any analogue to 
Rankin's theorem for this case. One might guess that a similar conclusion holds if 
E = {el,.. .,e,) and we assume that all the elements eiefl have odd order. 
However, this is not the case. We give two examples, one having all indices IG: 
( x )  1 odd for x E E and one having all these indices even. Following the usual 
convention [2], an E-cycle x,, .. .,x, having xi+, = xiei with ei in E and with 
x, = 1 is described by writing the word e,e, ... e, = 1. If x, # 1, I write x, 0 e,e, 
... e, = x, instead. 
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(1) Let 	 G = S, (the symmetric group) and let E = {a, b, c} be the set of 
elements of order 2. It is well known [2] that there is a partition with r = 1, 
namely, (ab), = 1. But there is also one with r = 2, namely, abac = 1 and 
b o a 2  = b. 

(2) Let 	G =A, (the alternating group) and let E = {a, b, c) with a = (12)(34), 
b = (123), and c = (234). The coset decompositions for (a) ,  (b) ,  and (c) 
all have r even but there is also a partition with r = 1, namely, ( ~ ~ a c ~ b ) ~  = 1. 
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