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n-Ellipses and the Minimum Distance 
Sum Problem 

Junpei Sekino 

1. INTRODUCTION. When we hear ellipse, we might think of planetary orbits or 
rooms with magical acoustic properties. In all such examples of ellipses in nature, 
the foci play a distinguished role. Our goal is to consider a natural class of 
generalized ellipses given by an arbitrary number of foci. Let c,, c,, . . . , c, be n 
distinct points in the plane, and let k be a positive constant. By the n-ellipse with 
foci c ,, c,, . . . , c, and the distance sum k, we mean the level set of the distance sum 
function 

at the level f(r) = k. We show that if k is sufficiently large (as explained in 
Theorem 6), then the n-ellipse is a piecewise smooth Jordan curve whose interior 
is convex; it is nonsmooth only where it contains a focus. The n-ellipses have 
diverse shapes that include curves resembling contours of eggs, lemons, pears, and 
even human faces, symmetric or asymmetric. Circles are 1-ellipses and ordinary 
ellipses are 2-ellipses. 

Surveying a family of n-ellipses given by a set of n foci on a computer screen 
reveals not only a variety of continuously changing contours but also the existence 
of a center, which is the unique point that minimizes the distance sum function; see 
Figure 1. It is interesting to explore the general behavior of the distance sum 
function but it is also important to examine its local properties near the center. 
The latter leads us to the critical points of the distance sum function and to 

Figure 1. A family of 9-ellipses and a center 
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geometrically intriguing properties. We show that a critical point is nondegenerate 
if and only if the foci are noncollinear. This theorem, which places circles and 
ordinary ellipses in a minor degenerate league, shows that the geometrically and 
analytically appealing case arises when the foci do not lie in a straight line. The 
existence of a center under this condition follows quickly. 

One outcome of our exploration is a mathematical model for certain optimiza- 
tion problems, and the final section of this paper lists a few examples that can 
be solved by a contour map and the properties of critical points. These problems 
may be given to students in a second year calculus or optimization class as a chal- 
lenging project. 

2. CONTOUR PLOTTING AND EXAMPLES. Sherlock Holmes said, "It is a 
capital crime to theorize before one has data." To gather data and develop our 
intuition, we used a contour plotter to draw a family of n-ellipses on the computer 
screen and display an approximate location of the center. We wrote a program to 
perform the task [4]; commercial contouring routines are available in computer 
algebra systems such as Maple and Mathernatica. 

Example 1. Figure 1shows a family of 9-ellipses and its center, which is related to 
a project in the final section. It shows that an n-ellipse need not contain all foci 
(indicated by stars) in its interior when n > 2. 

Example 2. As Figure 2 shows, a 3-ellipse generated by the vertices of an isosceles 
triangle can resemble the familiar section of an egg. The vertices of a rectangle 
generate 4-ellipses that resemble an ordinary ellipse, and so does a finite set of 
equally spaced collinear points. 

Figure 2. Assorted n-ellipses 

3. PRELIMINARY RESULTS. Consider the simple distance function 

g ( r )  = r e [  = \ l ( ~ - ~ ) ' +  ( Y - ~ ) '  (2) 
centered at a point c = ( p ,  q )  where r = (x, y). The domain of definition of g is 
the entire plane, and g is a C"-function on the plane with the focus c removed. A 
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straightforward calculation gives V I r - c I = (r - c)/l r - c I for r # c, so Vg(r) is 
the (unit) direction vector from c to r. We shall employ the convenient notation 
V 1 b - a I for the direction from a point a to another point b. By the linearity of V, 
we have: 

Theorem 1. The distance sum finction f in (1) is C" on the plane with the foci 
removed, and 

Thus, Vf is a gradient field on the plane with holes at the foci; we draw the 
gradient Vf(r) by placing its tail at r. According to Theorem 1, each Vf(r) is 
completely determined by the directions V I r - c iI, i = 1,2, . . .,n, which we call 
the direction components of Vf(r). Figure 3 illustrates a 2-ellipse and a 3-ellipse 
with gradients and their direction components (bold arrows) and the tangent lines 
perpendicular to the respective gradients. The 2-ellipse shows that the line 
segments rc, and rc, make equal angles with the tangent line. This "ball bouncing 
property" of an ordinary ellipse from one focus to another off the wall is not 
available in n-ellipses if n > 2. 

Figure 3. A 2-ellipse and a 3-ellipse 

The next lemma implies that every vertical section of the distance sum function 
f has at most one "valley" corresponding to a local minimum and no "hill" that 
corresponds to a local maximum. 

Lemma 1. Let L be any line, and parametrize L by r(t) = d t  + b where d is a unit 
vector. Then f(r(t)) is continuous and the directional derivativeof f along L ispiecewise 
continuous and monotone increasing (i.e., nondecreasing). 

Pro08 First, consider the distance function g in (2). The directional derivative 
Vg(r(t)) . d is the scalar projection of the direction vector V I r(t) - c I onto d and 
therefore it is increasing if c E L (see Figure 4). Similarly, if c E L, Vg(r(t)) .d is a 
monotone increasing step function that is undefined when r(t) = c. Since f(r(t)) is 
a finite sum of functions of the form g(r(t)), f(r(t)) is continuous and Vf(r(t)) .d is 
monotone increasing. The directional derivative does not exist when r(t) coincides 
with a focus of f. 
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Figure 4. The directional derivative of g along L 

Theorem 2. The function f in (1) has a global minimum. 

Proof Choose a compact disk D containing all the foci in its interior, and let C be 
the boundary of D. Then f attains a global minimum value M on D at some point 
s E D. Theorem 1 ensures that Vf(r) $2 0 for all r E C, and therefore, s belongs to 
the interior of D. Let L be any ray in the plane emanating from s, and let b 
be the intersection of L and C. Parametrize L by r( t)  = dt + s, t 2 0, where 
d = V 1 b - s I. Then Lemma 1 and f(s) = M imply Vf(b). d 2 0. Appealing to 
Lemma 1 once again, therefore, we have M = f(s) If(r(t)) for all t 2 0. This 
proves that M is the global minimum value of f on L, and the theorem follows. 
Note that M need not be achieved at a unique point. I 

4. CRTTICAL POINTS. By a critical point (abbreviated CP), we mean a point r 
where Vf(r) = 0. This includes the assumption that r is not a focus. We say that a 
CP is with n foci if f has exactly n foci. 

Theorem 1 ensures that r is a CP if and only if 

While this formula discourages algebraic approaches to a solution, it gives a 
striking geometric property of a CP: The directions from the foci add up to zero 
precisely at a CP, whence a CP depends only upon the directions from the foci but not 
the distances. Figure 5 stresses this point and shows distinct sets of foci (one set for 

Figure 5. Relationship between the foci and a CP 
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Figure 6. Examples of CP-patterns with 2, 3, 4, 5, and 6 foci 

each triangle) that have the same CP (the center of the unit circle). The circular 
part of Figure 5 ,  which we call a CP-pattem, consists of a CP and the direction 
components (bold arrows) of Vf(r) whose sum vanishes at the CP. Note that the 
negative of each direction component V I r - c, I points toward the focus c,. Figure 
6 illustrates a few more CP-patterns. The first CP-pattern of Figure 6 describes the 
only way Vf can vanish when there are exactly two foci, and therefore r is a CP 
with two foci if and only if r is strictly between the foci; the second CP-pattern 
shows that r is a CP with three foci if and only if the angle between any pair of the 
direction components is 120"; the third pattern shows that r is a CP with four 
noncollinear foci if and only if r is the center of the quadrilateral formed by the 
foci. The idea of locating CPs by means of the CP-patterns becomes elusive, 
however, if n 2 5. The fourth pattern shows a CP with five foci, and the rotations 
of the horizontal vectors bound together yield infinitely many distinct CP-patterns 
with five foci. In addition, a regular pentagon gives yet another CP-pattern with 
five foci, and there are others that match none of the above. The fifth pattern is 
just one of the infinitely many CP-patterns with six foci. 

The implication from the CP-pattern with two foci just observed can be 
extended easily to the following: 

Theorem 3. Suppose the foci of an n-ellipse are collinear. If n is even then a point 
r is a CP if and only if r lies strictly between the middle two foci. If n is odd, no 
CPs exist. 

According to the theorem, the distance sum function f can have no CPs or 
infinitely many CPs, and this raises the question: If the foci are noncollinear, how 
many CPs can f have? The second and third patterns in Figure 6 indicate that f 
can have at most one CP if the number of foci is 3 or 4, but it is not clear what 
happens for more foci. To settle this question, therefore, we take an analytic route. 
We say that a CP r is degenerate if 

-

a2f d 2 f  
-
dx2 dydx 

a2f a2f -
dx dy dy2

-
the Hessian matrix of f at r, is singular. 

Theorem 4. A CP of an n-ellipse is nondegenerate if and only if the foci are 
noncollinear. Furthermore, evely nondegenerate CP is a local minimum of the distance 
sum function. 

Proof Let r = (x, y) and c i  = (p i ,  q,). To avoid cluttered formulas, let 

x i = x - p i ,  y = y - q i ,  and g i = g i ( r ) = l r - e i l = d =  
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Then 

and 

where each summation is taken over i = 1,2, .  . .,n. Hence, 

g," -xi" E;:2 
= C = C7,

g? gi 

and similarly, 

xi" 
--
dy dx dx dy 

Setting Ai  = Xi/g;I2 and Bi = ~ / g ? / ' ,  the Hessian matrix of f can be written as 

Therefore, 

det Hf(r) = ( ~ A ~ ) ( ~ B , " )- (ZA~B, ) '  = I A ' I B '  - ( A ~ B ) '  

where A = (A,, A,, . . . ,A,) and B = (B,, B,, . . .,B,). It follows from the 
Cauchy-Schwarz inequality that det Hf(r) 2 0, and det Hf(r) = 0 if and only if A 
and B are linearly dependent. The rest follows from the second derivative test. 

According to Theorem 4, the CPs with 3, 4, 5, and 6 foci in Figure 6 are all 
nondegenerate. Since nondegenerate CPs are isolated [3, p. 81, Theorem 4 and 
Lemma 1 imply 

Corollary 1. If the foci of an n-ellipse are noncollinear, the distance sum function f 
has at most one CP, i.e., a CP is unique if it exists. 

We say that a point s is the center of the distance sum function f if s is the 
unique point at which f attains a global minimum. We now show that f has a 
center unless the foci are collinear and the number of foci is even. 

Theorem 5. Let an n-ellipse be given. (A) Suppose the foci are noncollinear. If a CP 
exists then it is the center; otherwise, one of the foci coincides with the center. 
(B) Suppose the foci are collinear. If n is even, then f has no center, and instead, 
f attains a global minimum at r if and only if r lies in the closed line segmentjoining 
the middle two foci; if n is odd, then the middle focus is the center off. 

Pro08 Let S be the set consisting of all CPs and foci and let M be the global 
minimum value of f. Since every local minimum of f is either a CP or a point at 
which f is not differentiable, it follows that f attains the value M at some point 
s E S but never at a point in the complement of S. 
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(A) S is finite by Corollary 1, and Lemma 1guarantees uniqueness of the point 
s where f(s) = M, i.e., s is the center of f .  Now, if no CPs exist then s must be a 
focus; if there is a CP at r then Theorem 4 ensures that f(r) is a local minimum; 
appealing to Lemma 1again, we conclude that r = s. 

(B) Suppose n is even, and let L be the line through the foci. Then S cL by 
Theorem 3, and consequently the global minimum value of f over L coincides with 
M. Let d be a direction of L and suppose without loss of generality that the foci 
are lined up on L in the direction d as 

c,, c 2 , .. . ,c,, c j+ , , .  . . , c Z m  SO that d = Vlc, - c, I .  (4) 

Parametrize L by r(t) = d t  + b, and given any index j, choose t = t, in such a way 
that r, = dt,) is strictly between c, and c,,, on L. Then r, separates L into two 
rays R, and R, such that c j  E R,, and therefore R, and R, contain exactly j and 
2m - j foci, respectively. Theorem 1and (4) ensure that 

j 2 m j 2 m 

= E V l c , - c , I +  E Vlc , - c21=  E d - E d = 2 ( j - m ) d ,  

and Vf(rj) . d = 2( j  - m) l d 1' = 2(j  - m). Consequently, d(f(r(t)))/dt = 

Vf(r) .d = 0 if and only if d t )  is strictly between c, and c,,,, . Since f(r(t)) is 
continuous, we now conclude that f(r(t)) = M if and only if r(t) lies in the closed 
line segment joining the middle two foci. A similar argument proves the second 
part of (B). 

Although Theorem 5(A) guarantees the existence of a (unique) center under 
any noncollinear arrangement of the foci, it is still incomplete in the sense that it 
tells neither when a CP exists nor which focus is the center if no CPs exist. 
Theorem 5(A) can be strengthened as follows: 

Suppose the foci are noncollinear and therefore a CP is unique whenever it 
exists (Corollary 1). From the second and third CP-patterns in Figure 6, we have: 

(C) There is a unique CP with three foci if and only if the foci form a triangle 
whose interior angle never exceeds or equals 120". 

(D) There is a unique CP with four foci if and only if the foci form a convex 
quadrilateral whose interior angle never equals 180" . 

If a CP with three foci fails to exist, which focus is the center? The answer is the 
focus that corresponds to the greatest interior angle of the triangle, which can be 
verified easily by checking the directional derivative of f on the line segments 
joining it and the other foci. The answer is the same for four foci. For more foci, 
CPs abound: 

(E) There is a unique CP with n foci if the foci form a convex n-gon whose 
interior angle never equals 180". 

The sufficient condition in (E) is not necessary: We can easily build a counterex-
ample using the CP-pattern with five foci in Figure 6. To justify (E), suppose n = 5 
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Figure 7. Is the center inside the little pentagon? 

and consider the convex pentagon in Figure 7. Each ri is a vertex of the smaller 
pentagon constructed by the "star-forming" diagonals. Let P be the smaller 
pentagon and let L be the closed line segment joining adjacent vertices of P ,  say 
r, and r,. Each gradient Vf(ri), i = 1,2, is given by offsetting four of its direction 
components as shown in the picture, and as a result, 

-Vf ( r i )  points into the interior of P, (5) 
i.e., -Vf(r,) has a positive projection on the inward unit normal to L at ri. 

Parametrize L by r(t) = d t  + r , ,  where d = V I r, - r ,  I. Since L does not 
contain any focus, the directional derivative Vf(r(t)) . d is continuous, and Lemma 
1ensures that its negative 

-Vf(r(t)) .d = cos 0 ( r ( t ) )  

is monotone decreasing, where 0(r(t)) = cos-'(-Vf(r(t)) . d) is the angle between 
-Vf(r(t)) and d. Consequently, 0(r(t)) is monotone increasing from 0(r,) to 6(r2) 
where O" < O(rl) < O(r2) < 18W, and the vector field -Vf points into the interior 
of P along the line segment L (except possibly at the CP if indeed L contains it). 
This implies that P contains the center, which in turn coincides with the CP off 
(Theorem 5(A)). 

If n > 5, Vf(r,) is the sum of n - 4 direction components but the preceding 
argument carries over as the property ( 5 ) can be observed easily under the general 
circumstance. 

Our final theorem concerns the general shape of n-ellipses. 

Theorem 6. Let M be the global minimum value off. Every n-ellipse with the distance 
sum greater than M is a piecewise smooth Jordan curve and its interior is a nonempty 
convex set. 

Proof Given k > M, let E be the n-ellipse with f(r) = k. Let S = f-l[M, k ]  and 
let int(S) denote the interior of S. Then int(S) = fP1[M, k), which is nonempty. 
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To show the convexity of int(S), let r,, r, E int(S), and parametrize the line L 
through r,, r, by r(t) = dt  + r,. Then Lemma 1 ensures that f(r) 5 max{f(r,), 
f(r,)) < k, whenever r is in L between r, and r,. This means that the portion of L 
between r, and r, is in int(S), so int(S) is convex. Next, we show that S is 
bounded, and therefore it is compact. Theorem 5 guarantees that there is a point s 
such that f(s) = M. If r E S then I r - s I I I r - c, I + Is - c,  I for each focus 
c , , so 

This proves that S is bounded. Now Theorem 5 also guarantees that all CPs are in 
int(S) whenever they exist. Therefore the Implicit Function Theorem ensures that 
E is a piecewise smooth curve: If no focus lies in E, then E is smooth; otherwise, 
cusps may occur at the foci that connect the smooth segments given by the Implicit 
Function Theorem. The n-ellipse E bounds a convex and compact region S, 
whence it must be a Jordan curve whose interior coincides with int(S). I 

5. STUDENT PROJECTS. The following problems are open-ended and solutions 
need not be unique. Your report must describe the logic behind your solutions and 
must explain how you used computers or calculators. Use the map provided 
(Figure 1without the curves and lines). 

A woman owns a trendy specialty-food store in each of the nine cities shown in 
the map. 

(a) She plans to open another store in the United States. The new site is to be 
her headquarters and she wants the location to be the most convenient for 
frequent trips she makes by her private airplane to the nine cities. If she visits each 
city equally frequently directly from the headquarters, where should she locate the 
new store? 

In the following, suppose you have solved the nine city problem and that the 
owner of the chain has built her headquarters. 

(b) She wants to open two more stores including one in San Antonio, but she 
does not want to move her headquarters. What other city should she choose? What 
if "two" were replaced by "three"? "four"? "five"? 

(c) If she wants to relocate the Atlanta store without moving the headquarters, 
where should she move it? 

(d) If changing American eating habits force her to close two of the nine stores, 
but she does not want to relocate her headquarters, which two stores should she 
close? 

(Possible Solutions) The contour plot of Figure 1, which is given by assigning a 
coordinate system on the map, points to a mountainous area near the Utah-Wyom- 
ing border: (a) Choose Salt Lake City, the largest city in the area. From the 
geometric interpretation of (3), we also have: (b) Boise, Idaho, which "counterbal- 
ances" San Antonio with respect to the center; (c) Choose a city on the line 
segment between Salt Lake City and Atlanta; Yes, moving the store from Atlanta 
to, say Denver, changes the contours but the center stays miraculously in the same 
area. (d) San Francisco and New York. 
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Inquisitive students may wish to extend the idea of n-ellipse to that of weighted 
n-ellipse given by the new function 

n 

f ( r )  = C w i l r - c i l  
i = l  

with weights wi > 0. The critical points r of f satisfy the equation Cr,,wiV I r - c i  I 
= 0. This causes the corresponding CP-patterns to become more complex, but as a 
trade-off, the weights provide us with optimization problems that are more 
realistic. The following example shows the effect of weights on the center: 

(e) Because of the varying business size, the owner of the chain in (a) above put 
the following weights on the nine cities: Seattle = 2.5, Salem = 1,SF = 2.4, LA = 

2.2, SD = 2.4, Miami = 2.2, Atlanta = 2, NY = 6, and Minneapolis = 2. This 
means, for example, that she visits NY six times as frequently as Salem, Oregon. 
Where should she locate her headquarters? Figure 8 shows that the center shifts 

Figure 8. A family of weighted 9-ellipses 

eastward to a point near Iowa City mainly due to the heavy weight placed on 
New York. 
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