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10722. Proposed by Richard F: McCoart, Loyola College, Baltimore, MD. 
(a) In how many ways can 2n indistinguishable balls be placed into n distinguishable urns, 
if the first r urns may contain at most 2r balls for each r E { I ,  2, . . . ,n)? 
(b) Suppose that 0 _< m 5 n. In how many of the ways enumerated in part (a) are exactly 
m urns empty? 

10723. Proposed by Christopher J. Hillal; Yale University, New Haven, CT, Let p be an 

2' . i p 2  -= c ! ~ - ' ) / ~r=l (mod p). odd prime. Prove that ~ f l ~ ~ip-2 

10724. Proposed by Serge Tabachnikov, University of Arkansas, Fayetteville, AR. 
(a) Let P be a convex plane polygon with vertices Al, . . . , A,, and let 1 be a continuous 
transverse field of directions along the boundary aP.  (This means that through every point 
X E a P there passes a line 1 (X) that intersects the interior of P and depends continuously 
on X.) Let cri and pi be the angles between the line 1 (Ai) and the adjacent sides Ai Ai -1 and 
AiAi+1, respectively. Assume that n; sin cri = n; sin pi. Prove that the lines 1(X) cover 
the interior of P twice, that is, every interior point of P belongs to at least two of these lines. 
(b) Suppose n 2 3, and let P be a convex polyhedron in n-dimensional space. As in (a), a 
continuous transverse line field 1 is given along the boundary a P .  This field has the property 
that for every (n - 2)-dimensional face E of P there exists a hyperplane n ( E )  such that all 
the lines 1 (X) with X E E belong to n (E) .  Prove that the lines 1 (X) cover the interior of P 
twice. 

SOLUTIONS 

Principal Ideals in Noetherian Rings 

10534 [1996,5 lo]. Proposed by PaulArne Qstvcer, Oslo University, Oslo, Norway. Suppose 
that R is a Noetherian ring in which all maximal ideals are principal. Show that all ideals 
in R are principal. 

Solution by Robert Gilmer; Florida State University, Tallahassee, FL. If M = (m) is a 
maximal ideal of R, then M/M2 is a vector space over the field RIM of dimension at most 1. 
Hence there are no ideals of R properly between M and M2. From this it follows (R. Gilmer, 
Multiplicative Ideal Theory, Queen's Papers Pure Appl. Math. 90 (1992), Theorem 39.2) 
that R = D l  $ . . . $ D, $ SI $ . . . $ S, is a finite direct sum of Dedekind domains Di 
and special primary rings Si.To show that each ideal of R is principal, it suffices to show 
that the Di and Si have this property. For Si this is part of the definition of a special primary 
ring (Gilmer, p. 200). Moreover, Di inherits from R the property that each of its maximal 
ideals is principal, and a Dedekind domain is a principal ideal domain whenever all of its 
maximal ideals are principal. 

Editorial comment. D. D. Anderson mentions a stronger result that appears in R. Gilmer and 
W. Heinzer, Principal ideal rings and a condition of Kummer, J. Algebra 83 (1983) 285-292: 
If R has the ascending chain condition on principal ideals and each maximal ideal of R is 
principal, then every ideal of R is principal. 

Solved also by Mahalal'el ben keinan (Israel), F. Calegari (Australia), J. E. Dawson (Australia), T. H. Foregger, 0. Moubinool 
(France), S. Sertoz (Turkey), and M. Tab& (Morocco). 

A Telescoping Constraint 

10566 [1997,68]. Proposed by Gerry Myerson, Macquarie University, Australia. Let S be 
a finite set of cardinality n > 1. Let f be a real-valued function on the power set of S, and 
suppose that f (A n B) = min{f (A), f (B)} for all subsets A and B of S. Prove that 

= f (S) - rnax f (A), 
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