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The Bieberbach Conjecture 
and Milin's Functionals 

Arcadii Z. Grinshpan 

Dedicated to the memory of Isaak Moiseevich Milin (1919-1992) 

The now-settled Bieberbach conjecture (1916) for the Taylor coefficients of 
univalent (1-1 analytic) functions is one of the most famous and inspirational 
problems of mathematics. The following events are milestones in the long history 
of this problem. 

(i) Bieberbach7s conjecture motivated the development of the Loewner paramet- 
ric method (1923), which became a very useful tool in the theory of univalent 
functions. 

(ii) In 1971, I. M. Milin constructed a sequence of functionals associated with 
his exponentiation approach and the Bieberbach conjecture. He conjectured that 
these functionals were nonpositive, and gave an elementary argument showing that 
his conjecture implies Bieberbach7s. 

(iii) In 1984, L. de Branges proved that Milin7s functionals were nonpositive. He 
used Loewner7s method together with results and ideas from several fields of 
mathematics. This achievement allowed de Branges to confirm the Bieberbach 
conjecture as a theorem. 
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de Branges' original argument was complicated. During 1984-97, analysts from 
several countries simplified every component of his approach. Using the ideas of 
various authors, we prove the Bieberbach and Milin conjectures in a way accessible 
to many readers. A helpful basic reference is [4]. 

1. THE BIEBERBACH CONJECTURE: SIMPLE TO STATE BUT HARD TO 
PROVE. According to the Riemann mapping theorem (1851) [4, Section 1.51, every 
simply connected domain D that is a proper subset of the complex plane can be 
mapped analytically and 1-1 onto the unit disk E = {z : 1 z 1 < 1). Furthermore, 
there is a unique such mapping that takes a given point in D into the origin and 
has a positive derivative there. This fundamental result allows complex analysts to 
formulate many extremal problems in the plane in terms of normalized univalent 
(schlicht) functions in E. Therefore the analytic and geometric properties of such 
functions are of interest. The behavior of their Taylor coefficients has been the 
subject of intensive research for most of the Twentieth Century. 

Let S (for schlicht) be the class of functions f(z)  that are analytic and 1-1 in E ,  
and normalized by the conditions f(0) = 0, f'(0) = 1. An important example is the 
Koebe function K(z) = z/(l  - = C;=,nzn, which maps E onto the plane slit 
along (-co, -1/41. This function is extremal for many classical functionals on S. 
For example, for all f E S and all z E E we have 

which is known as the growth theorem [4, Section 2.31. The Koebe function is of 
particular interest when dealing with coefficient estimates. 

Let {f), denote the coefficient of z" in the Taylor series expansion about z = 0 
of a function f(z). Note that {K}, = n, n = 1,2, .  . . . 

The Bieberbach conjecture (1916) [2] asserts that 

for each f E S, and that equal@ holds for any given n only for the Koebe function 
K(z) and its rotations h ~ ( h z ) ,  I h 1 = 1. 

For nearly 70 years, many mathematicians, including the very best analysts, tried 
to prove or disprove this conjecture [I], [4], [lo]. L. Bieberbach himself proved it 
for n = 2 [2]. Here is a short version of his proof based on the fact that area is 
always nonnegative. 

Theorem A. (L. Bieberbach [2]). Iff E S, then I {f}, I < 2, with equal@ if and only 
iff is a rotation of the Koebe function. 

Proofi The function F(z)  = f ( ~ ~ ) ] - ~ / ~zP1 - $ { f } 2 ~  is univalent in E \[ = + + + +  

{O} [4, Section 2.11. For r E (0, I), let Cr be the image under F of the circle 
I z 1 = r. Clearly, C, is a simple closed curve. Switching to polar coordinates, we 
write F(rei") = ~ e 0 5~a <~2 ~ ., Since the area enclosed by Cr is positive, 
we have 

where the integration is performed along Cr in the counterclockwise sense. Using 
RW" = rR,, one of the Cauchy-Riemann equations in polar coordinates, we find 
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dW = (r/R)R, d a .  It follows that 

As r + 1we deduce that ){f}, 1 4 2. Equality is possible only if F(z)  = z-I - Az, 
where 1 A I = I i { f } ,  I = 1, and thus f(z)  = h ~ ( A z ) .  

The present proof of the Bieberbach conjecture for n > 2 is based on four 
theorems (A, B, C, D) and four lemmas (1,2,3,4). The desired result is an immedi-
ate consequence of Milin's Theorem C and de Branges' Theorem D. Theorem C 
states that if certain functionals on S are nonpositive (the Milin conjecture) then 
the Bieberbach conjecture is true. Theorem D asserts the truth of the Milin 
conjecture. 

We follow Milin's argument to prove Theorem C. A particular case of his 
monotonicity lemma (Lemma 2) implies the so-called Lebedev-Milin exponential 
inequalities for formal power series. We obtain (2) by applying the Cauchy-Schwarz 
inequality and the Lebedev-Milin inequalities to the coefficients of a function in 
S.  Theorem A is used to settle the case of equality. 

The proof of Theorem D based on de Branges' idea requires some familiarity 
with Loewner's approach (Section 2). It is sufficient to prove the nonpositivity of 
Milin's functionals only for a dense subclass of S (Lemma 1) associated with 
Loewner's differential equation (3) (Theorem B). We use a simplified coefficient 
form of de Branges' construction to produce for each f in this subclass, and for 
each Milin functional I, a differentiable function cp(t), 0 4 t 4 T, so that p(0) = 

I (f )  and p(T) = 0. We combine Loewner's equation, certain polynomial inequali-
ties (Corollary of Lemma 3), and a simple lemma (Lemma 4) to show that cp' 2 0; 
it follows that I (f )  4 0. 

All theorems and lemmas are arranged in historical order, which also turns out 
to be the logical one. Thus, a certain amount of energy and patience allows the 
reader to walk in the footprints of C. Loewner, I.M. Milin, L. de Branges, and 
many other mathematicians in proving the famous conjecture. 

2. THE LOEWNER METHOD: A POWERFUL BUT SELECTIVE TOOL. The 
parametric method introduced by C. Loewner in 1923 [S] and later developed by 
other authors (see [4, Chapter 31) permits one to solve many extremal problems on 
the class S via reduction to a dense subclass associated with a partial differential 
equation. 

Although Loewner's method has been very productive, it is far from being 
universal. Loewner used it to prove (2) for n = 3 (and n = 2) in his original paper 
[S]. However a proof for n = 4 based solely on Loewner's method was given (by Z. 
Nehari) only 50 years later, when the cases n = 4,5,6 had been settled by other 
means (see [4; Sections 3.5, 4.6 and Notes, pp. 69, 1391). Despite substantial efforts, 
no one was able to use Loewner's method in a direct proof of any case n > 4. In 
fact, prior to 1984 no method yielded the conjectured estimate for coefficients 
beyond the first six. 

Fortunately, Loewner's representation theorem for single-slit mappings (func-
tions that map E onto the plane slit along a Jordan arc) can be applied to Milin's 
functionals. It is a consequence of the CarathCodory convergence theorem (1912) 
[4, Section 3.11 that the single-slit mappings are dense in S with respect to uniform 



convergence on compact subsets of E. A proof of this important property can be 
found in [4, Section 3.21. Changing it slightly we show that something stronger 
is true. 

Lemma 1. To each f E S there corresponds a sequence of single-slit mappingsf ,  E S, 
n = 1,2, .  . . , such that f ,  + f uniformly on compact subsets of E as n + m, and the 
boundary of each f,(E), n 2 1, contains a subray of the negative real axis. 

Proofi Each function f E S can be approximated uniformly on closed subdisks of 
E by the functions r-lf(rz) E S, 0 < r < 1. Thus, it is sufficient to prove our 
statement for a function f E S that maps E onto a domain D bounded by an 
analytic Jordan curve C. In this case there exists a subray L of the negative real 
axis that belongs to the complement of D except for its endpoint w, E C. 

Let J, be a Jordan arc that runs from infinity along L to the point w, and then 
along a portion of C to a point wn (Figure 1). Let G ,  be the complement of J, and 

Figure 1 

let g, denote the unique 1-1 analytic map of E onto G, such that g,(O) = 0 and 
gL(0) > 0. Choose the endpoints w,, n = 1,2, .  . ., so that JncJ,,, and w, + w,. 

Then D is the component of n:=,G, containing the origin. According to the 
CarathCodory convergence theorem, g, + f uniformly on compact subsets of E as 
n + co. Hence gL(0) + f'(0) = 1 and we may take f ,  = g,/gL(O), n 2 1. 

Thus, the single-slit mappings that omit a subray of the negative real axis are 
dense in S. Similar slit mappings have been considered by G. M. Goluzin, 
P. P. Kufarev, W. K. Hayman, and other authors. Lemma 1 can be obtained 
without the CarathCodory theorem, or by just using some of its proof's compo-
nents. For example, use the Schwarz lemma [4, Section 1.11 and the growth 
theorem (1)to show that the functions g,, n 2 1, are uniformly bounded on closed 
subdisks of E. Then it suffices to establish the existence of a subsequence of {g,} 
that converges uniformly to f on compact sets [4; Sections 1.1and 1.31. 

We now state the representation theorem. 

Theorem B. (C. Loewner [8]). Let f E S map E onto the complement of a given 
Jordan arc J = { V ( t ) :0 I t I m} (V  is 1-1 and continuous) extendingfrom V(0)to 
infinity. For each t > 0 let f ( z ,  t )  denote the unique 1-1 analytic map of E onto the 
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plane less the portion of Jfrom V(t) to infinity such that f(0, t )  = 0 and fz(O, t )  > 0, 
and let f(z,  0) = f(z). 

The parametrization V(t) can be chosen so that fz(O, t) = et,  t > 0. In this case 
f(z,t)  satisfies the partial differential equation 

where y (t) is a continuous complex-ualuedfunction on [O, a)with I y I = 1. 

We refer the reader to [4; Section 3.3 and Exercise 8, p. 1171 for a proof of this 
classic result. The family {f(z, t )  : t 2 0) is an example of a so-called Loewner chain 
starting at f (z)  and generated by a continuously increasing family of simply 
connected domains (Figure 2). The point V(t) corresponds to y(t) under the map 

z-plane 

Figure 2 

f(z ,  t). One can use the Schwarz lemma to show that if V(t) < 0 for t 2 T 2 0 
then f(z, t) = etK(z) for these values of t. We also note that the Taylor coeffi- 
cients of f(z ,  t )  are differentiable in the parameter t. This may be shown by using 
Cauchy's integral formula and differentiation with respect to t under the integral 
sign. 

3. THE MILIN THEOREM AND CONJECTURE: SOMETIMES IT'S BETTER 
TO ATTACK A HARDER PROBLEM. Since f(z)/z is analytic and zero-free in E 
for any f E S, we may take log[f(z)/z] to be the (analytic) branch that vanishes at 
z = 0. With this understanding, the logarithmic coefficients of any f E S are 
{log[ f(z)/z]},, n = 1,2 , . . . . For example, {log[K(z)/z]}, = 2/12. 

In 1971, I. M. Milin established the following far-reaching connection between 
the Bieberbach conjecture and the logarithmic coefficients of univalent functions. 

Theorem C. (I.M. Milin [lo, discussion before Theorem 3.21). For f E S and 
n 2 1, define 

n 

I A f )  - z ( n  + 1 - m)(mI{log[f(z)/zl1,1~ - 4/m). (4) 
m = l  

If 
I,(f 1 5 0 ( 5 )  

for each f E S and each n 2 1, then the Bieberbach conjecture is true. 



The functionals I, in (4) are called Milin's functionals and ( 5 )  is known as 
Milin's conjecture. Since I,(K) = 0 for all n 2 1, Milin's conjecture involves an 
extremal property of the Koebe function deeper than that of Bieberbach's conjec-
ture. Although the Milin conjecture was verified in certain cases in 1972 [6], few 
seriously believed at the time that one could prove the Bieberbach conjecture 
through (5). However it was Theorem C that ultimately led researchers out of the 
dead end they had faced for many years. 

Milin's theorem and conjecture go hand in hand with the exponentiation 
approach developed by Milin in his book [lo, Chapters 2 and 31. Properties of 
formal power series generated by the exponential function play a crucial role in 
Milin's theory, and the monotonicity lemma [lo, Lemma 2.21 is the deepest known 
result of this kind. It has many applications to univalent functions, including a 
proof of Theorem C. Here we need only a particular case of this lemma, and our 
proof is similar to the one in [lo]. 

Lemma 2. Let {A,}: be an arbitray sequence of complex numbers, and let the 
sequence {Dm}; be defined by the formal expansion 

m Cc x Dmzm= exp x A m z m  . 
m=O = i 

Let 

Then ... 5 0, 5 ... 0, I 0, = 1, and a, ,  = 1 for some n > 1 if and only if 
there is some A with I A1 = 1 such thatA, = Am/m, m = 1 , . . . ,n - 1. 

Proof: Differentiation of (6) and coefficient comparison yield 
n 

nD, = C mA,D,,-,, n 2 1.  
m=l  

By the Cauchy-Schwarz inequality, 

(7) and the inequality (1 - x)ex I 1 with x = (1 - a,)/(n + 1) give 

If O,,,, = 1, then- I A, 1' = a, = 1 and there are constants A, ( v  = 1,.  . . ,n) such 
that mA, = A,D,-,, m = 1,.. . , u. Since Do  = 1and D l  =A, ,  we get uA, = A,, 

I A, I = 1, and A, = A,-, A,. It follows that Am = AY/m, m = 1 , . . . ,n. 

Proof of Theorem C: Let f E S and set 
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Then 
n - 1  

I f > n  = C DmDn-I-,, n > 1. 
m=O 

The Cauchy-Schwarz inequality gives 
n - 1  

lIf>lll5 C l ~ , , , l ~ .  (8) 
m=O 

To prove (2) for any given n > 1use (8), the inequality Or, I 1from Lemma 2 
with A, = {log[f(z)/z]},/2 ( m  2 11, and ( 5 )  for the preceding value of n. 

If I {f In I = n ,  then Lemma 2 ensures that {f 1, = {log[ f(z)/z]l1 = 2 Al = 2A, 
where I A I = 1. Since the Bieberbach conjecture is already known to be true for 
n = 2 (Theorem A), it follows that f (z)  = AK(AZ). ¤ 

The inequalities On I 1 in Lemma 2 are known as the Lebedeu-Milin exponential 
inequalities. In 1967, Milin presented them in a more general form but without 
proof as a joint work with N. A. Lebedev [9]. Milin used his monotonicity lemma to 
prove them in [lo]. All published proofs of the Lebedev-Milin inequalities to date 
are similar to the one in [lo]. 

4. DE BRANGES' DISCOVERY: THE EAGLE HAS LANDED. In 1984, 
L, de Branges proved a subtle multiparameter inequality for bounded univalent 
functions that implies the nonpositivity of Milin's functionals (the final version of 
his proof was published in [3]). This result and Milin's Theorem C allowed 
de Branges to confirm the truth of the Bieberbach conjecture. It came as a 

Milin's place, St. Petersburg, Russia (1984). de Branges' proof of Milin's conjecture has been verified. 
L. de Branges is about to become a mathematical hero. Left to right: seated are Isaak Milin and 
Louis de Branges; standing are Mrs. Asya Grinshpan, Mrs. Evdokiya Milin, Arcadii Grinshpan, and 
Evgenii Emelyanov. 



sensation to the mathematical world. So far no one has proved the Bieberbach 
conjecture in any other way, nor has anyone given an essentially different proof of 
Milin's conjecture. 

As a result of discussions that took place during a series of talks given by de 
Branges to the Goluzin seminar in geometric function theory, de Branges' original 
proof was verified and reformulated in a simpler form in collaboration with I. M. 
Milin, E.  G. Emelyanov, the author, and others in St. Petersburg, Russia in May, 
1984 (see Milin's comments [Ill). C. FitzGerald and Ch. Pommerenke [5], and later 
L. Weinstein [12], further simplified the proof of Milin's conjecture. However their 
key steps remain the same: apply Loewner's method and use the fact that certain 
functions introduced by de Branges (de Branges' functions) are nondecreasing in 
Loewner's parameter t .  In general, every de Branges function comes from a 
Loewner chain starting at some mapping f. In Milin's case it serves as a delicate 
link between the value of a Milin functional at f and 0 (discussion after Theorem 
A, Section 2, and (17)). 

5. THE AUXILIARY POLYNOMIAL INEQUACITIES: COULD THEY HAVE 
BEEN PROVED TWO HUNDRED YEARS AGO? The proof that de Branges' 
functions are nondecreasing is based on the nonnegativity of certain polynomials 
on the interval [0, 11. de Branges recognized this nonnegativity property as a 
particular case of the Askey-Gasper inequalities for hypergeometric series (1976) 
[3]. Later, Weinstein's simplification [12] led to the same property via the addition 
theorem for Legendre polynomials (1785). See also [13], where a mathematician 
(D. Zeilberger) collaborated with a computer (Shalosh B. Ekhad). More recently, 
the author and M. E. H. Ismail [7] found an elementary and self-contained proof 
of the polynomial inequalities in question. Here we give a simplified version of 
this proof. 

Lemma 3. The polynomials B,, .(x) defined by the formal expansion 

can be expressed as 

( n  - m ) !  
Bm,,(x) = 4-. 

( n  + m)!  

Pro05 Taking advantage of an elementary observation used by Th. Clausen (1828), 
we show that one function is the square of another by means of two linear 
differential equations. 

Given a function u = u(x) and two integers m and n (0 < m In), define 

Coefficient comparison reveals that uo(x) = (d/dx)" (x2 - 1)" satisfies the+" 

second-order linear differential equation H[u ]  = 0, and hence the equation 
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But we can rewrite (11) as a third-order equation for h = u2 satisfied by h ,  = u;: 

Using Leibniz's rule for the ( n  + m)-th derivative of the product ( x  - l ) " ( x + 1)" 
we find 

n ! ( n + m ) !
h , ( l )  = u i ( 1 )  = 4"-" 

m ! ( n  - m ) !  

The next step is to show that each polynomial Bm, ,  differs from a solution 
of (12) by the m-th power of (1  - x2) . Indeed, the left-hand side of (9) can be 
written as 

so we can use the binomial expansion and the identities 

u - m  
m =1 

to obtain B,,,(x) = (1 - x2)",g(x2- 11, where 

n-m ( n  + m  + u ) !  ( 1 / 2 )u+,,, 

g ( x > = 
u=, 
C -u !  ( n  - m - u ) !  ( u  + 2 m ) !  ( u  + m ) !  ' 

The symbol (1/2lk denotes the shifted factorial of 1/2:  

( 1 / 2 ) ,  = 1 and ( 1 / 2 ) ,  = ( 1 / 2 ) ( 1 / 2  + 1)  ( 1 / 2  + k - I ) ,  k = 1 ,2 , . . . . 

To see that G ( x ) = g(x2- 1) satisfies (12), substitute G ( x )  for h ( x )  in the 
left-hand side of (12),divide through by x,  and consider the result as a polynomial 
in ( x 2- 1). It is identically zero if and only if all of its coefficients are zero, i.e., if 
and only if 

for fixed n and m and corresponding values of the index u. Since 

(13) is easy to verify. 
Finally, we observe that a polynomial solutioil of (12) is uniquely determined by 

its value at x = 1. Indeed, we can write this solution as a polynomial in ( x  - 1). 
Then (12) allows us to find all of its coefficients step-by-step. Because G and h ,  
are polynomials and 

(10)follows. rn 



Corollary 1. The polynomials P,, ,(x) defined by the formal expansion 

are nonnegative for x E [0, 11. 

6. DE BRANGES' THEOREM (THE PROOF OF MILIN'S CONJECTURE): A 
FUNCTION WITH NONNEGATIVE DERIVATIVE IS NONDECREASING. In 
this section we combine the main idea of de Branges with a coefficient representa- 
tion of de Branges' functions to present a short proof of Milin's conjecture. We 
take into account some observations from [5] and [I21 on treating Loewner's 
equation and the auxiliary polynomials. 

Theorem D. (L. de Branges [31). For each f E S and each n 2 1, Milin'sfunctionals 
(4) satisjj 

5 , ( f  2 0. (15) 

To prove Theorem D we need one more lemma. 

Lemma 4. Let a,, m = 1,2, .  . . , be given and define b, = 2(1 + Cr=:,,a,) - a,, 
m = 1,2, .  . . . Then 

Proofi We use induction on m. Since a, + b, = bk+l  - a,+,, (16) holds for 
m = (k + 1) if it is valid for m = k, and (16) holds for m = 1because b, - a, = 2. 

H 

Proof of Theorem D: Fix a natural number n. 
Since I,, is a continuous functional on S [4, Section 1.41, it is sufficient to prove 

(15) for the dense subclass of S consisting of all single-slit mappings that omit a 
subray of the negative real axis (Lemma 1). Fix f (z )  in this subclass and construct 
the Loewner chain {f(z,  t) : t 2 0) as in Theorem B. Then there exists some T 2 O 
such that f(z,  t )  = efK(z) for t 2 T (discussion after Theorem B). Define the 
differentiable function 

where c,(t) = {log[f(z, t)/z]}, and w(z, t) is the Pick function defined implicitly 
by the equation 

e tK(w(z ,  t ) )  = K ( z ) ,  z E E, t 2 0. 

Clearly, w(z, 0) = z and hence cp,,(O)= In(f 1. Also %(T) = O since c,(T) = 

{log[eTK(z)/z]}, = 2/m, m 2 1.Thus it is enough to show that 4 2 0. 
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First we use the definitions of w = w ( z ,  t )  and K ( z )  to get 

= Z [ I  - ( 2 ( 1  - e - ' )  + e - ' ( L  + ~ - l ) ) z+ z 2 I 1 ,  

provided 5 # 0 and 1 w I < I L I, 1 [ I-'. This equation and (14) give 

Now we observe that W ( Z ,t )  satisfies the equation w,/w = ( w  - l ) / ( w  + I) ,  
and use the expansion ( 1  + w ) / ( l  - w )  = 1 + 2w + 2w2 + . . +  and (18) to 
compute 4 : 

Dividing (3) by f ( z ,  t )  and comparing the coefficients of z m  on both sides, we find 

We are now in a position to apply Lemma 4 with a ,  = me,, yl" and 6, = c:, y"', 
m = 1 , .  . . ,n,  to the last line in (19). We have 

Corollary 1and (20) show that p;(t) 2 0, t E [O,T I .  It follows that In(f )  s 0. 

Although our proof did not require a geometric description of the Pick function, 
we mention that for each t > 0, w ( z ,  t )  = e- 'z  + maps E onto E cut along the 
negative real axis from - 1 to 1 + 2[(e2t- et) l I2  - e t ] .  

7. PROOF OF THE BIEBERBACH CONJECTURE. Theorems C and D imply 
that the Bieberbach conjecture is true: 

Main Theorem. (L. de Branges [3]).Let f E S.  Then 

Equality holds for any given n only for the Koebe finction K ( z )  = z / ( l  - z ) 2  and its 
rotations h ~ ( h z ) ,I h l = 1. 



--- - - --- 
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From the MONTHLY100 years ago. . . 

Harvard University has just issued its Course of Study in 
Mathematics for the year 1899-1900. Among the courses offered in 
advanced Mathematics are the following: General Theory of 
Surface, Prof. J. M. Peirce; Dynamics of a Rigid Body, Professor 
Byerly; Quaternions with Applications to Geometry and Mechanics, 
Prof. J. M. Peirce; Trigonometric series, Introduction to Spherical 
Harmonics, Potential Functions, Professors Byerly and B. 0 .  
Peirce; Theory of Functions (Second Course), Riemann's Theory of 
Functions, Professor Osgood; Algebra-Galois's Theory of Equa- 
tions, Professor Osgood; Lie's Theories as Applied to Differential 
Equations, Dr. Bouton; etc., etc. The courses offered at Harvard 
are sufficiently varied and extensive to meet the wants of any 
student of mathematics. 
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