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Finally, in the last expression set 1 = m - n.  

Editorial comment. William Seaman and the proposer proved that both sides equal the value 

a t x  = -1 oft:=, (&) rn 
(1 - x ~ ) ~ .  

Solved also by J. C. Binz (Switzerland), R. J .  Chapman (U K.), Q. H Darwish (Oman), J. E. Dawson (Australia), M. Ismail & 

P. Simeonov (U. K.), M. Omarjee (France), L. Pebody (U K ), C. R.  Pranesachar (India), R.  Richberg (Germany), W. I. Seaman, 
H . 4 .  Seiffert (Germany), A. Tissier (France), and the proposer. 

A Large Bipartite Subgraph 

10580 [1997,270]. Proposed by Stephen C. Locke, Florida Atlantic University, Boca Raton, 
FL. Let G be a simple graph with v vertices and e edges and with maximum degree at most 
3. Suppose that no component of G is a complete graph on 4 vertices. Prove that G contains 
a bipartite subgraph with at least e - v/3 edges. 

Solution by James M. Benedict and Gerald Thompson, Augusta State University, Augusta, 
GA. When G is bipartite, the claim holds trivially, so we may assume that the chromatic 
number of G is at least 3. Since G does not have a complete graph of order 4 as a component, 
Brooks's Theorem implies that G is 3-colorable. Consider a proper 3-coloring using colors 
red, white, and blue; we may assume that blue appears least often. 

Each blue vertex has at most 3 neighbors, all red or white. In either red or white it has at 
most one neighbor. After removing that edge, we can change the blue vertex to that color 
and still have a proper coloring. Doing this for each blue vertex deletes at most v/3 edges 
and produces a 2-colored (that is, bipartite) subgraph. 

Editorial comment. Brooks's Theorem states that a graph with maximum degree k has a 
proper k-coloring if k p 3 and no component is a complete graph of order k + 1 (see for 
example J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, 
1976, p. 122). An inductive solution that avoids Brooks's Theorem is also possible. 

Solved also by R. I. Chapman (U. K.), C. P. Rupert, P. Tracy, and the proposer. 

Solid Angles of a Tetrahedron 

10598" [1997, 4571. Proposed by Jeffrey C. Lagarias, AT&T Research, and Thomas J. 
Richardson, Bell Laboratories, Murray Hill, NJ. Let Fl,  F2, F3, F4 denote the faces of a 
tetrahedron. For i = 1 , 2 ,  3 , 4 ,  let a!i denote the solid angle of the vertex opposite face Fi ,  
where the measure of a solid angle is normalized so that a full solid angle is 1, and let pi 
denote the area of Fi,where the unit of area is normalized so that the tetrahedron has surface 
area 1. 
(a) Prove that pi p a i .  
(b) Generalize to m dimensions. 

Solution by John H. Lindsey 11, Ft. Myers, FL. 
(a) We prove the sharper claim that Bi > f (nu i ) ,  where f (6 ' )  = see 6' tan Q - tan2 8 = 
l/(cscQ + 1). To see that this bound is sharper, note that a!i < 112, since 112 is the 
normalized solid angle of a plane and each angle of the tetrahedron lies on one side of a 
plane. Since f (0) = 0, f ( ~ 1 2 )= 112, and f "(Q) = see4 @(sin 6' - 112(sin6' - 2) < 0, we 
have f (nu)p a! for 0 < a! < 112. 

Suppose that a counterexample exists. We relabel and translate to arrange that the coun- 
terexample occurs for i = 1, the vertex opposite FI is the origin 0,and the other vertices 
are X U ,  y V, z W ,where U ,  V, W are unit vectors and x,  y, z are positive. Then 
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