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Finally, in the last expression set 1 = m - n.  

Editorial comment. William Seaman and the proposer proved that both sides equal the value 

a t x  = -1 oft:=, (&) rn 
(1 - x ~ ) ~ .  

Solved also by J. C. Binz (Switzerland), R. J .  Chapman (U K.), Q. H Darwish (Oman), J. E. Dawson (Australia), M. Ismail & 

P. Simeonov (U. K.), M. Omarjee (France), L. Pebody (U K ), C. R.  Pranesachar (India), R.  Richberg (Germany), W. I. Seaman, 
H . 4 .  Seiffert (Germany), A. Tissier (France), and the proposer. 

A Large Bipartite Subgraph 

10580 [1997,270]. Proposed by Stephen C. Locke, Florida Atlantic University, Boca Raton, 
FL. Let G be a simple graph with v vertices and e edges and with maximum degree at most 
3. Suppose that no component of G is a complete graph on 4 vertices. Prove that G contains 
a bipartite subgraph with at least e - v/3 edges. 

Solution by James M. Benedict and Gerald Thompson, Augusta State University, Augusta, 
GA. When G is bipartite, the claim holds trivially, so we may assume that the chromatic 
number of G is at least 3. Since G does not have a complete graph of order 4 as a component, 
Brooks's Theorem implies that G is 3-colorable. Consider a proper 3-coloring using colors 
red, white, and blue; we may assume that blue appears least often. 

Each blue vertex has at most 3 neighbors, all red or white. In either red or white it has at 
most one neighbor. After removing that edge, we can change the blue vertex to that color 
and still have a proper coloring. Doing this for each blue vertex deletes at most v/3 edges 
and produces a 2-colored (that is, bipartite) subgraph. 

Editorial comment. Brooks's Theorem states that a graph with maximum degree k has a 
proper k-coloring if k p 3 and no component is a complete graph of order k + 1 (see for 
example J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, 
1976, p. 122). An inductive solution that avoids Brooks's Theorem is also possible. 

Solved also by R. I. Chapman (U. K.), C. P. Rupert, P. Tracy, and the proposer. 

Solid Angles of a Tetrahedron 

10598" [1997, 4571. Proposed by Jeffrey C. Lagarias, AT&T Research, and Thomas J. 
Richardson, Bell Laboratories, Murray Hill, NJ. Let Fl,  F2, F3, F4 denote the faces of a 
tetrahedron. For i = 1 , 2 ,  3 , 4 ,  let a!i denote the solid angle of the vertex opposite face Fi ,  
where the measure of a solid angle is normalized so that a full solid angle is 1, and let pi 
denote the area of Fi,where the unit of area is normalized so that the tetrahedron has surface 
area 1. 
(a) Prove that pi p a i .  
(b) Generalize to m dimensions. 

Solution by John H. Lindsey 11, Ft. Myers, FL. 
(a) We prove the sharper claim that Bi > f (nu i ) ,  where f (6 ' )  = see 6' tan Q - tan2 8 = 
l/(cscQ + 1). To see that this bound is sharper, note that a!i < 112, since 112 is the 
normalized solid angle of a plane and each angle of the tetrahedron lies on one side of a 
plane. Since f (0) = 0, f ( ~ 1 2 )= 112, and f "(Q) = see4 @(sin 6' - 112(sin6' - 2) < 0, we 
have f (nu)p a! for 0 < a! < 112. 

Suppose that a counterexample exists. We relabel and translate to arrange that the coun- 
terexample occurs for i = 1, the vertex opposite FI is the origin 0,and the other vertices 
are X U ,  y V, z W ,where U ,  V, W are unit vectors and x,  y, z are positive. Then 
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Varying x ,  y,  and z does not change a1; therefore we may choose a sequence of counterex-
amples (0,x, U, y, V, znW) with 0 < X, , y,, Z, for which PI converges to its infimum. 
Some ordering of (x,, y,, z,) must occur infinitely often, so after reordering the vertices, 
passing to a subsequence, and resealing, we may assume 1 = x, 2 y, 2 z,. 

Suppose z, -+ 0. Then terms that are small relative to x, y, I U x V I do not affect the 
limit of (1). Ignoring them, we are left with 

This is a 2-dimensional analogue ((l/B;,,,) - I)-' for the triangle with edges x, y, U x V 
and x, z, U x W. Assuming the 2-dimensional version, we have 

1 1 1 1 1 
--lim -= lim ---! ? lim 

-1 - -- -- 1 --
I > 1 I ?  

Bl,n 6 , n  .f '(naj,n) , f (na { )  -, f ( n f f ~ )-

since a ; ,  the angle between U x V and U x W, is one of the dihedral angles of the tetrahedron 
that meet at 0.Thus we do not have a counterexample. Therefore we may assume that 2,  

does not converge to zero, and passing to a subsequence we get a limiting nondegenerate 
tetrahedron that is a counterexample and that is a minimum for BI. 

Let P I ,  P2, P3, P4 be the vertices of this tetrahedron, with P1the origin. We may assume 
that Fl is parallel to the x,y-plane and at distance a from it. Let P; be the projection of 
P1 onto the plane containing F1. Imagine moving Pi toward P1 at a constant rate. By 
minimality, the derivative of the ratio of areas defining ( l /BI  - 1)-l with respect to time 
is 0 at the start of this motion. The component of the movement orthogonal to the plane 
containing F1has no first order effect on the area of F1 at the start, so if we replace the area 
of F1by its projection on the original plane of F I ,  then the derivative of our new ratio is 
again 0 at the start. However, the new ratio is a quotient of linear functions of time, so, since 
it has derivative 0 at the start, it must be constant. If P; lies outside F l ,  say outside the edge 
P3Pq, then while P2is en route to P1,P2*(the projection of P2 onto the plane containing F1) 
crosses the extended edge, at which point our new ratio is 0.  This is impossible since the ratio 
is constant. When Pi reaches P I , our new ratio is the ratio of the area of the projection of Fi 
onto the plane of F1to the area of Fi .  This ratio is bi (a2+ bf)-'I2, where bi is the distance 
from P;' to the edge of F1opposite Pi .  It follows that ( l /P1 - I)-' = bi(a2+ bf)-lI2 for 
every i E { 2 , 3 , 4 ) .Thus P; and b = bi are the incenter and inradius of F I .  

Let g (y )  be the solid angle, normalized so that the full solid angle is 4 n ,  from PI 
spanned by a right triangle P; RS in the plane of F l ,  with I P; R I = b, 1P; RS = n/2 ,  and 
I R P; S = y . A calculation shows that 

Since g (y )  is concave upward, g(0) = 0, and g(n/2) = arctan(b/a), it follows that g (y )  < 
( 2 y l n )  arctan (b la)  for y E (0, n/2).  Since F1 is a union of six such triangles P;' RS, with 
angles y summing to 2 n ,  we see that 4 n a l  = C g(y)  < (2 C y / n )  arctan (b la)  = 
4 arctan (b la) ,  where the summations are taken over the 6 values of y .  Hence tan nal < 
b la ,  and 

Thus a counterexample cannot exist. 

(b) The argument is similar. In dimension rn > 3 we again get strict inequality. To see this, 
consider a counterexample in dimension rn. Arrange that i f ( n a l )  and that the vertices 
are P1= 0 and Pi = ziUi for 2 i i i rn + 1, where Ui are unit vectors and zi > 0. Again 
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varying the zi does not change a l ,  so we may choose a sequence for which approaches 
its infimum. A subsequence either degenerates to a lower dimensional simplex or leads to a 
counterexample with B1 minimal. If the limit is degenerate, then a computation shows that 
there is a counterexample for lower m, contradicting the minimality of m. 

Therefore we may consider a counterexample that has B1 minimal under varying the 
zi. Assume that F1 lies in the affine subspace S = {(a,  x2, . . . ,x,)), and let P; be the 
projection of PI into this subspace. Arguing as for the 3-dimensional case, we see that P; 
is in the interior of Fl and is equidistant from all the faces of F I .  Let this common distance 
be b. Let F be a face of F1, let T be the (m -2)-dimensional affine subspace containing F ,  
and let Q be the orthogonal projection of P1 into T.  Let f (r)dr be the solid angle generated 
from P; by the points of T whose distance from Q is between r and r +d r .  Let S(r)  be the 
sphere of radius r about Q in T, and define gF(r)  = area(F n S(r))/area(S(r)). Note that 
gF(r)  is nonincreasing, by convexity of F. If a solid angle cD in S with vertex P; meets T at 
a distance from Q of between r and r +d r ,  then let hh(r )  be the measure of the solid angle 
from P1 generated by the portion of cD bounded by T .  With these definitions, F generates 
a solid angle of irgF(r)f (r)dr from P; in S, and the portion of Fl between F and P; 

PI.(r)dr from fgF(r)hh(r) 1:generates a solid angle of 
Since gF(r)  is nonincreasing and nonconstant, and since hh(r) is increasing, we have 

Let At be the (t - 1)-dimensional area of the t-dimensional sphere of radius 1. Summing 
the last inequality over all faces of F1 gives 

CO 00 

Amal Sg f (r)dr < ' 4 - 1  Sg hh(r)f (r)dr. (2) 

The same calculation applies if F1 is replaced by the slab G = {(a, x2, . . . , x,) : 1x21 5 b}, 
except that (1) we now get equality, since for both faces H of G,  the function g~ is identically 
1, and (2) a1 is replaced by 4, the probability that the ray from 0 through a random point 
v = (yl , . . . , y,) on the unit sphere hits G .  Hence 

From (2) and (3), we infer that a1 < 4.  The random ray from 0 hits G if and only if yl > 0 
and Iy21/y1 5 b la .  This depends only on the direction of (yl, y2), which is uniformly 
distributed. Thus a1 < 4 = a ; ,  where a: is the value of a1 for the (2-dimensional) 
isosceles triangle J with altitude a and base 2b. Since J has the same value of B1 as G has, 
we are reduced to the 2-dimensional case. Since we can approximate G by F1, f ( n u l )  is 
the best possible lower bound for B1. 

A Tricky Convergence 

10614 [1997, 7671. Proposed by Grigore-Raul Tataru, University of Bucharest, Bucharest, 
Romania. Fix p > 1. Suppose that a l ,  a2, . . . is a sequence of positive real numbers such 
that a,a,+la:+2 + an+2 - a, = 0 for all n 2 1. Show that {a,} is convergent. 

PSolution by the GCHQ Problems Group, Cheltenham, U. K. Since a, -an+2 = anan+la,+2 
is positive, the even and odd subsequences are decreasing and therefore convergent, say to x 
and y respectively. Taking limits gives yxp+l = 0 = xyp+', so at least one of x and y must 
be 0. Without loss of generality, we may assume x = 0. If y > 0, then a2,-1 - a2,+l > 
y ~ + 1 a 2 , ,  so the series x u 2 ,  converges. Let m be large enough that a2,,+1 < 2y and 
a2, < 1. Let E = azm. For n >_ m, we have a2, - a2,+2 < 2 y ~ p + 1 ,so the number of 
integers n with €12 5 ~ 2 ,< E is at least ( E / ~ ) / ( ~ ~ E P + ' )  = 1/(4yrP) > 1 / ( 4 y ~ ) ,  and 
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