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Decision Making: A Golden Rule 

Dimitris A. Sardelis and Theodoros M. Valahas 

1. INTRODUCTION. Suppose someone suggests to you the following game: You 
are able to take as many slips of paper as you please and on each slip write a 
different number without restrictions. Then, you turn the slips face down, shuffle 
them, and start turning them face up, one at a time. As the numbers present 
themselves one after the other, the proponent of the game is to interrupt their 
procession by speculating that some number just passed is the largest of the 
sequence. He is to make a single guess about a number being the largest right at 
the moment that it shows up. If all slips have been turned over and he has not yet 
pronounced a preference, he must "choose" the last number. The proponent of 
the game is courteous enough to play the game with any odds you consider to be 
fair. What would you suggest? 

This problem first appeared in the February 1960 issue of Scientific American 
[7]. Since then, it has been extended [I-21 and generalized [3-91 in many directions 
by eminent probabilists and statisticians so one may justly claim that it now 
constitutes a distinct field of study within probability-optimization theories. It has 
come to be known as the beauty contest problem, the secretary problem, the 
marriage problem or fiancC problem, and the dowry problem. 

The importance of the game is that it provides an artificial-idealized simulation 
of sequential decision processes. Indeed, everyday life reveals that almost all 
successful decisions are preceded by a learning period during which one observes, 
classifies, and ranks experiences. Given a finite life-span for some decision making, 
many alternate strategies can be pursued, every one of which is specified by the 
ratio between learning and acting-decision periods one agrees to employ. The 
solution offered by the idealized mathematical version of the problem is remark- 
able: The optimum strategy is attained when about e-' of the available decision 
time is devoted to learning. The probability of success for this optimum strategy is 
also about e-', which is approximately 37%. This simple and elegant rule rightly 
deserves to be called a golden rule for decision making. 

We explore the problem and construct its solution through an ongoing, develop- 
ing learning process. At first, we elaborate on the alternative possible strategies by 
listing and enumerating the cases where particular strategies win. Thus, we form a 
preliminary conception of the optimization nature of the problem and we derive a 
general expression for a strategy's probability of success. This expression is then 
used to determine a probability spectrum for the winning strategies in cases where 
direct listing and counting are not possible. A pattern of optimal strategies 
emerges, ultimately expressed by general conditions. These in turn yield a further 
expansion of the horizons of the problem that culminates in the devising of (a) a 
practical guide for making optimal decisions and (b) a very efficient rule for 
estimating the decision span for which any particular strategy becomes optimal. 
Finally, exploration of the optimization conditions for the winning strategies leads 
to the golden rule for decisions. 

2. PROBLEM DESCRIPTION. The original problem with the slips of paper may 
be restated more formally as follows: A known number N of items is to be 
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presented to an observer one by one in random order, all possible orderings being 
equally likely. The observer is able at any time to rank without ties the items that 
have so far been presented in order of desirability. As each item is presented he 
must either accept it, in which case the process stops, or reject it, in which case the 
next item in the sequence is presented and the observer faces the same dilemma as 
before. If the last item is ever reached it must be accepted. The observer's aim is to 
find the best of the N items available by employing a strategy with as high a 
probability of success as possible. 

3. ON THE POSSIBLE STRATEGIES. The observer must either accept or reject 
an item right at the moment that it is presented, i.e., he cannot go back and choose 
an already-presented item that, in retrospect, turns out to be best. He has to 
balance the risk of stopping too soon and accepting an apparently desirable item 
when an even better one might be still to come, against that of going on too long 
and discovering that the best item was rejected earlier. 

All possible strategies range between two equally likely extremes that constitute 
the worst choices an observer can make. On the one hand, an observer might pick 
the first item. On the other hand, he might wait for the last item. The probability 
of success for both these trivial strategies is the same and equals 1/N. 

Consequently, getting some experience from the contest process-by observing, 
comparing, and ranking items-before reaching a decision, cannot make things 
worse. On the contrary, there is hope for improving one's chances. Let us define 
the following N - 2 non trivial S,, strategies: 

The observer lets n items pass, 1 5 n 5 N - 2, ranks them in order of 
desirability, and then among the next items selects the first one found with a 
higher rank. 

Among all possible strategies S,,, the observer wants to select and employ the one 
with the maximum probability of success. 

4. EXPLICIT SOLUTIONS. To gain some insight into the problem context, it is 
instructive to explore the simplest cases first, i.e., when the total number N of 
items is small. 

Let us evaluate the probability of success for each S ,  strategy explicitly when 
N = 3,4,5. Our goal will be achieved by brute force, i.e., by listing in every such 
case all possible orderings and their associated winning strategies (the items are 
represented by their ranks). The optimal strategy in all cases will be the one that 
wins most often. 

TABLE1. Orderings and Winning 
Strategies ( N  = 3) 
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Case N = 3 There are 6 possible orderings (1,2, . . . ,6)  and one non-trivial 
strategy, S, (see Table 1). Thus S, wins in the orderings 2,3, 4 
and loses in all others. Therefore, the probability of success for S, 
is 3/6 = 50%. 

Case N = 4 There are 24 orderings in this case and there are two non-trivial 
strategies: S,, S, (see Table 2). Strategies S, and S,, are success-
ful with probabilities P(Sl) = 11/24 and P(SJ = 10/24. There-
fore, S, is the optimal strategy. 

TABLE2. Orderings and Winning Strategies ( N  = 4) 

Case N = 5 There are 120 orderings here and there are three non-trivial 
strategies: S,, S,, and S, with probabilities of success P(Sl)  = 

50/120, P(S,) = 52/120, and P(S,) = 42/120 (see Table 3). 
Therefore, the optimal strategy is S,. 

After this direct listing and enumeration of cases, we see that 

(i) the non-trivial strategies do indeed improve odds compared to a chance 
selection, and 

(ii) among these strategies, some are better than others. 

5. A STRATEGY'S PROBABILITY OF SUCCESS. The search for good strategies 
by listing of all orderings becomes a forbidding task for larger N. Even for N = 10 
there are about 3.5 million, while for N = 15 there are one trillion! Consequently, 
we must figure out some abstract way to estimate the probability of success for 
strategies. 

Let us start with some general observations. A strategy S, may fail in two ways: 

The best item may be included in the n items defining S,. As an example, for 
N = 5 we have three strategies: S,, S,, and S,. Strategy S, loses whenever 
number 5 appears first or second or third, S, loses whenever number 5 
appears first or second and, finally, S, loses whenever number 5 appears first. 
The best item may be preceded by at least one item whose rank exceeds those 
of the first n items. For example, when N = 4 strategy S, loses in orderings 1 
and 7 where one chooses as best number 3 instead of 4. Similarly, for N = 5 
strategy S, loses in 68 orderings, (e.g., 26 and 52), while S, loses in 78 
orderings (e.g., 31 and 55). 
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Consequently, S, is a winning strategy if 

(a) the best item is a candidate for selection, and 
(b) the ranks of items, if any, preceding the best, do not exceed those of the first n 

items. 

These two conditions lead to a general expression for the probability of success of 
strategy S,, henceforth denoted as PJS,). 

Let E, denote the event that the best item is at some position k, i.e., it is the 
kth term in the N-item sequence. Since all orderings are assumed equally likely, 
then by condition (a), the respective probability is P(E,) = 1/N with k > n. 

Let F, denote the event described by condition (b). Then the probability that Fk 
occurs, i.e., that the highest rank of the first k - 1 terms appears in the first n 
terms, is P(F,) = n/(k - 1). 

S, is a winning strategy if both conditions (a) and (b) are satisfied. Since events 
E, and Fk are independent, and all E, events are exclusive and exhaustive 
alternatives, we have 

N 


This is the desired expression for the probability of success for any strategy S, and 
for any number N of items one cares to choose from. The PJS,) expression is 
also valid for n = N - 1, in which case it equals 

PN(SN-1) = [ ( N  - l ) / N ]  . [ l / ( N  - I ) ]  = 1/N, 
as it should be. 

Since we have made no assumptions about the distribution of items, we safely 
say that the S, decision rule is general. 

6. THE PROBABILITY SPECTRUM FOR THE WINNING STRATEGIES. The 
P,(S,) general expression in (1) provides a powerful tool for evaluating 
the probabilities of winning for all S, strategies without actually having to list the 
possible orderings and count the corresponding winning frequencies. Table 4 
exemplifies this point for N = 1,2,.  . . ,20 and all possible strategies S,, 0 I n I N 
- 1.Every entry is the probability of success of a strategy S, when the number of 
items is N, expresed with four significant digits. 

7. OPTIMAL STRATEGIES. Each column in Table 4 possesses a maximum 
probability for some value of N. For example, in columns S, and S,, the 
probabilities of success are 0.3984 for N = 11 and 0.3850 for N = 19. Further- 
more, we see that every row corresponding to a particular N-value possesses a 
maximum probability of success for some strategy. For example, the maximum 
probabilities of success for N = 10 and N = 16 are 0.3987 and 0.3881, respectively, 
and they correspond to strategies S, and S,, respectively. 

The emerging pattern of optimal strategies may be expressed by the following 
statements: 

(a) To every number N of items there corresponds one strategy S, with a maximum 
probabili~ of success, and conversely, 

(b) every possible strategy S, is optimal for a particular number N of items. 
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TABLE4. Probabilities of Success for Strategies ( N = 1to 20) 



For fixed N, the winning probabilities for any two successive strategies, S, and 
S ,  +,,differ by 

The optimal strategy corresponds to the smallest n that makes AP(,, negative. 
Therefore, the best n for a given fixed N is the least n such that 

For fixed n, the winning probabilities of S ,  for any two consecutive N-values, N 
and N + 1, differ by 

It follows that S, is best for the smallest N-value that makes AP(,) negative. 
Therefore, the best N for a given fixed strategy S, is the least N such that 

The latter condition expands our computational and conceptual horizons of the 
problem considerably. Table 5 presents the N-values where specific S ,  strategies 
(fixed n) become most appropriate, i.e., they attain the maximum possible proba- 
bility of success. This probability is also maximum when all possible S, strategies 
are compared for the same N. 

8. GEOMETRIC EVALUATION OF PROBABILITY FOR OPTIMAL STRATE- 
GIES. The treatment of the problem may be extended still more with quite 
interesting results. In what follows we shall consider condition (5 )  for optimal 
strategies within the realm of the real number continuum. Consequently, we shall 
deduce an efficient rule for identifying the best N-value for any S, strategy. 

Every term of the sum in (5), say the term l /m,  may be represented as the area 
of the rectangle m-M-M+m+ (see Figure 1) with base (m-m+)  = 1 and height 
(Mm) = l /m.  Evidently, M is a point on the hyperbola y = l/x. The area 
(LM-M) below the hyperbola is 

1 
E = (LM-M) = 

Similarly, the area (MM+N) above the hyperbola is 
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TABLE5. A Practical Guide on Making the Optimal Decision when Choosing the Best out of a 
Number N of Contestants Presenting Themselves in Sequence 

Decision Rule: Let n of out N contestants pass, rank them in order of desirability, and then choose the 
first contestants who rank higher. 

Figure 1 
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Consequently, the area of the region LM-M is larger than the area of the region 
MM+N, i.e., E > E ,  since 

Therefore, we have 

Summing up for m = n, n + 1, .  . . , N - 1gives 

For optimal strategies, (5) ensures that the right-hand side of (10) is larger than 1. 
Thus, the optimal N-value for a fixed S,, strategy is the smallest N that satisfies 

Thus, the best N for a given fixed strategy S, is the least N such that 

The corresponding probability of winning P,(S,) has an upper bound 

9. THE ASYMPTOTIC BEHAVIOR OF STFUTEGIES. Having established two 
alternative ways of evaluating the probabilities of success for strategies-sums (1) 
and integrals (12)-we are now in a position to compute these probabilities for 
large values of N and compare the results. Table 6 displays: 

(i) the characteristic optimal (n, N )  pairs for large N, 
(ii) the respective ration (n/N), 

(iii) the 	corresponding probability of success derived by sums, denoted as 
Pr(C), and 

(iv) the probability of success derived by the integral approximation, denoted as 
Pr(1) in (12). 

From Table 6 we see that the probabilities calculated by (1) and (12) both 
decrease as n increases and they start to (a) coincide (within six significant figures) 
from the entry (n = 300, N = 815) onwards, and (b) converge to 0.367879 from the 
entry (n = 2,000,000, N = 5,436,563). We also observe that the ratio (n/N) 
converges to the very same number 0.367879. This latter number is e-l. 

Thus, we conclude that the two distinct characteristic quantities of optimal 
strategies, i.e., the ratio (n/N) and the probability of success, both converge to the 
same limit as N -. a. 

This conclusion may also be derived formally. Since the best N for any S, 
strategy is defined as the least N-value satisfying ( l l ) ,  we have 2 N  > 2en + (1 - e) 
for N, and 2en + (1 - e) 2 2(N - 1) for the immediately lower value, N - 1. 
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TABLE 6 .  Probabilities of Success for strategies when N is Large 

Hence we have 

It follows that lim ( n / N )  = l / e  and, consequently, (12)gives lim P,(S,) = l / e .
N+= N+=


Concluding, we may state the following Golden Rule for decisions: 

The optimum strategy is to wait until e-' of the items pass and then select the 
next relatively best one. The probability of success for the optimum strategy is e-'. 
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TABLE7. The Pyramid e-Expansion of N for Optimal Strategies 

Having established that the golden rule for decisions is associated with e, it is 
interesting to note that when n takes as values the successive integer powers of 10, 
the corresponding values of N generate the decimal expansion of e. This is 
illustrated in Table 7. 
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There is a sibling rivalry 
between this conjecture and its negation 
and I, poor mother 
throw up  my hands. 
"Anything, anything. 
"Whatever you decide. 
"Just please 
"hurry up 
"and make up your mind." 

Contrlbutcd by Marlon Cohcn, Drexcl Unlvers~ty. Ph~ lade lph~a ,  PA 
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