

Decision Making: A Golden Rule

Dimitris A. Sardelis; Theodoros M. Valahas

The American Mathematical Monthly, Vol. 106, No. 3. (Mar., 1999), pp. 215-226.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28199903%29106%3A3%3C215%3ADMAGR%3E2.0.CO%3B2-C

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

Decision Making: A Golden Rule

Dimitris A. Sardelis and Theodoros M. Valahas

1. INTRODUCTION. Suppose someone suggests to you the following game: You are able to take as many slips of paper as you please and on each slip write a different number without restrictions. Then, you turn the slips face down, shuffle them, and start turning them face up, one at a time. As the numbers present themselves one after the other, the proponent of the game is to interrupt their procession by speculating that some number just passed is the largest of the sequence. He is to make a single guess about a number being the largest right at the moment that it shows up. If all slips have been turned over and he has not yet pronounced a preference, he must "choose" the last number. The proponent of the game is courteous enough to play the game with any odds you consider to be fair. What would you suggest?

This problem first appeared in the February 1960 issue of *Scientific American* [7]. Since then, it has been extended [1-2] and generalized [3-9] in many directions by eminent probabilists and statisticians so one may justly claim that it now constitutes a distinct field of study within probability-optimization theories. It has come to be known as the beauty contest problem, the secretary problem, the marriage problem or fiancé problem, and the dowry problem.

The importance of the game is that it provides an artificial-idealized simulation of sequential decision processes. Indeed, everyday life reveals that almost all successful decisions are preceded by a learning period during which one observes, classifies, and ranks experiences. Given a finite life-span for some decision making, many alternate strategies can be pursued, every one of which is specified by the ratio between learning and acting-decision periods one agrees to employ. The solution offered by the idealized mathematical version of the problem is remarkable: The optimum strategy is attained when about e^{-1} of the available decision time is devoted to learning. The probability of success for this optimum strategy is also about e^{-1} , which is approximately 37%. This simple and elegant rule rightly deserves to be called *a golden rule for decision making*.

We explore the problem and construct its solution through an ongoing, developing learning process. At first, we elaborate on the alternative possible strategies by listing and enumerating the cases where particular strategies win. Thus, we form a preliminary conception of the optimization nature of the problem and we derive a general expression for a strategy's probability of success. This expression is then used to determine a probability spectrum for the winning strategies in cases where direct listing and counting are not possible. A pattern of optimal strategies emerges, ultimately expressed by general conditions. These in turn yield a further expansion of the horizons of the problem that culminates in the devising of (a) a practical guide for making optimal decisions and (b) a very efficient rule for estimating the decision span for which any particular strategy becomes optimal. Finally, exploration of the optimization conditions for the winning strategies leads to the golden rule for decisions.

2. PROBLEM DESCRIPTION. The original problem with the slips of paper may be restated more formally as follows: A known number N of items is to be

presented to an observer one by one in random order, all possible orderings being equally likely. The observer is able at any time to rank without ties the items that have so far been presented in order of desirability. As each item is presented he must either accept it, in which case the process stops, or reject it, in which case the next item in the sequence is presented and the observer faces the same dilemma as before. If the last item is ever reached it must be accepted. The observer's aim is to find the best of the N items available by employing a strategy with as high a probability of success as possible.

3. ON THE POSSIBLE STRATEGIES. The observer must either accept or reject an item right at the moment that it is presented, i.e., he cannot go back and choose an already-presented item that, in retrospect, turns out to be best. He has to balance the risk of stopping too soon and accepting an apparently desirable item when an even better one might be still to come, against that of going on too long and discovering that the best item was rejected earlier.

All possible strategies range between two equally likely extremes that constitute the worst choices an observer can make. On the one hand, an observer might pick the first item. On the other hand, he might wait for the last item. The probability of success for both these trivial strategies is the same and equals 1/N.

Consequently, getting some experience from the contest process—by observing, comparing, and ranking items-before reaching a decision, cannot make things worse. On the contrary, there is hope for improving one's chances. Let us define the following N - 2 non trivial S_n strategies:

The observer lets n items pass, $1 \le n \le N-2$, ranks them in order of desirability, and then among the next items selects the first one found with a higher rank.

Among all possible strategies S_n , the observer wants to select and employ the one with the maximum probability of success.

4. EXPLICIT SOLUTIONS. To gain some insight into the problem context, it is instructive to explore the simplest cases first, i.e., when the total number N of items is small.

Let us evaluate the probability of success for each S_n strategy explicitly when N = 3, 4, 5. Our goal will be achieved by brute force, i.e., by listing in every such case all possible orderings and their associated winning strategies (the items are represented by their ranks). The optimal strategy in all cases will be the one that wins most often.

Strategie	s (N =	3)		
1	1	2	3	
2	1	2	2	

TABLE 1. Orderings and Winning

1	1	2	3	
2	1	3	2	S ₁
3	2	1	3	S ₁
4	2	3	1	S ₁
5	3	1	2	
6	3	2	1	

- Case N = 3 There are 6 possible orderings (1, 2, ..., 6) and one non-trivial strategy, S_1 (see Table 1). Thus S_1 wins in the orderings 2, 3, 4 and loses in all others. Therefore, the probability of success for S_1 is 3/6 = 50%.
- Case N = 4 There are 24 orderings in this case and there are two non-trivial strategies: S_1 , S_2 (see Table 2). Strategies S_1 and S_2 , are successful with probabilities $P(S_1) = 11/24$ and $P(S_2) = 10/24$. Therefore, S_1 is the optimal strategy.

1	1	2	3	4			13	3	1	2	4	S ₁	S ₂
2	1	2	4	3		S_2	14	3	1	4	2	S_1	S_2
3	1	3	2	4		S_2	15	3	2	1	4	S_1	S_2
4	1	3	4	2		S_2	16	3	2	4	1	S_1	S_2
5	1	4	2	3	S_1		17	3	4	1	2	S_1	
6	1	4	3	2	S_1		18	3	4	2	1	S_1	
7	2	1	3	4			19	4	1	2	3		
8	2	1	4	3	Sı	S ₂	20	4	1	3	2		
9	2	3	1	4		S_2	21	4	2	1	3		
10	2	3	4	1		S_2	22	4	2	3	1		
11	2	4	1	3	S_1		23	4	3	1	2		
12	2	4	3	1	S_1		24	4	3	2	1		

TABLE 2. Orderings and Winning Strategies (N = 4)

Case N = 5 There are 120 orderings here and there are three non-trivial strategies: S_1 , S_2 , and S_3 with probabilities of success $P(S_1) = 50/120$, $P(S_2) = 52/120$, and $P(S_3) = 42/120$ (see Table 3). Therefore, the optimal strategy is S_2 .

After this direct listing and enumeration of cases, we see that

- (i) the non-trivial strategies do indeed improve odds compared to a chance selection, and
- (ii) among these strategies, some are better than others.

5. A STRATEGY'S PROBABILITY OF SUCCESS. The search for good strategies by listing of all orderings becomes a forbidding task for larger N. Even for N = 10 there are about 3.5 million, while for N = 15 there are one trillion! Consequently, we must figure out some abstract way to estimate the probability of success for strategies.

Let us start with some general observations. A strategy S_n may fail in two ways:

- The best item may be included in the *n* items defining S_n . As an example, for N = 5 we have three strategies: S_1 , S_2 , and S_3 . Strategy S_3 loses whenever number 5 appears first or second or third, S_2 loses whenever number 5 appears first or second and, finally, S_1 loses whenever number 5 appears first.
- The best item may be preceded by at least one item whose rank exceeds those of the first *n* items. For example, when N = 4 strategy S_2 loses in orderings **1** and **7** where one chooses as best number 3 instead of 4. Similarly, for N = 5 strategy S_2 loses in 68 orderings, (e.g., **26** and **52**), while S_3 loses in 78 orderings (e.g., **31** and **55**).

	Γ	S3	S3	S3			S3	S3	S3	S3										S3	S3	S3				ŝ	S3	ŝ		٦
		S_2			S_2	Ŝ	S2	ŝ	S2	S_2	S_2	S2								S_2			S2	S_2		ŝ			ŝ	ઝે
													s	ō	Š	s	S	S		S			S	S		ŝ			õ	s
	S	4	5		4	-	5	3	5	1	3	1	4	ξ	4	1	3		5	4	5	2	4	2	Ś	4	5	-	4	-
	4	5	1	5	1	4	3	5	-	5	1	З	3	4	1	4	1	3	4	5	2	5	2	4	4	5	1	5	1	4
()		-	4	4	5	5	-	1	3	3	5	5	-	1	e	3	4	4	7	7	4	4	5	5		1	4	4	5	5
2 	3	ς	3	ξ	3	3	4	4	4	4	4	4	5	5	S	5	S	2	-	-	-	-	-	-	2	2	7	2	2	2
(N	2	7	2	7	7	2	2	2	7	7	7	7	7	2	2	7	2	7	ŝ	З	ŝ	3	3	3	3	3	З	3	3	ŝ
gies	31	32	33	34	35	36	37	38	39	9	41	42	43	4	45	46	47	48	6	50	51	52	53	54	55	56	57	58	59	60
ateg	Ĺ	<u> </u>	Ľ	Ľ.	<u> </u>		Ľ			Ľ	Ľ	Ľ	Ľ		Ľ	Ľ	Ľ	Ľ	Ľ								_			
Str				1	r=				6	6		-	6	6		6	_	_	-	-	-		-	-	-	~	~	6	_	
ng		ŝ	ŝ	Š				ŝ	Ś	Ś			Ö	Ś	Ö	Ö										Š	ö	Š		
nni					S	S		S			S	ŝ	ŝ	ŝ	ŝ	S	S	S											ŝ	S ₂
I W																			ō	Ś	ō	S	s	s					ō	s
anc	5	4	5	S	4	ξ	S	4	S	2	4	7	5	3	S	2	ŝ	2	4	m	4	5	3	2	2	4	5	З	4	3
ngs	4	S	ς	5	S	4	4	5	2	5	2	4	e	5	2	2	2	ς	ς	4	5	4	7	ŝ	4	5	m	5	ε	4
leri	m	m	4	4	5	5	7	7	4	4	5	2	7	2	ε	Э	S	2	2	2	3	ε	4	4	3	З	4	4	S	5
ŌĭŌ	2	2	2	2	2	2	m	e	3	3	m	m	4	4	4	4	4	4	5	5	5	S	S	5	-	-	-	-	-	
Э.	-	E	-	-	-	-	-	Ι	-	-	-	-	1	-	1	1	-	-	F	-	-	-		-	2	2	2	2	2	2
TABLE		7	Э	4	5	9	-	×	6	10	Π	12	13	14	15	16	17	18	61	20	21	22	23	24	25	26	27	28	29	30

3

4

ŝ SS ŝ

ŝ ŝ ŝŝ ŝŝ

ŝ

ŝ <u>ភភភ</u>

ŝ

ā

2

86 18

4444

44

83

4 4

> 106 108 60 0

m m 4

104

S

Ś

-404

4 4 2

24

20 40 0 80 120

<u> ত ত ত ত</u>

5

~ 5 1

88

4444

85

8

~ ~ 4 4 4 4 4 4

5

4

Ś

SSSS

ŝ ŝ

s sīs

S

ŝ ŝ

ā ā ā

ŝ

ŝ

2 **^**

4 4 4

5

2

88 6

\Box
Strategies
Winning
and
Orderings
.Е З.

<u> তৃত্তত্ত্</u>ত্ত

<u>0-40</u>

5

4

<u>SSS</u>

2

S

4

66566

1

4 4 4

8 5 5 5

6

4 \mathbf{v} 4

> 4 4

> > \sim

1989

5 5

4 4

ŝ S

a

4

4 4

86

4 4

Ś ∇ mm Ś Ś 5 $\infty | \infty$ Ś

ŝ $\tilde{\omega}\tilde{\omega}\tilde{\omega}$

ŝ ŝ S2

 \sim m m

4 4

2 Ś

<u> 222222222</u>

4 4

1

2

m 4

5 2 757

4

44

F

00100

Consequently, S_n is a winning strategy if

- (a) the best item is a candidate for selection, and
- (b) the ranks of items, if any, preceding the best, do not exceed those of the first n items.

These two conditions lead to a general expression for the probability of success of strategy S_n , henceforth denoted as $P_N(S_n)$.

Let E_k denote the event that the best item is at some position k, i.e., it is the kth term in the N-item sequence. Since all orderings are assumed equally likely, then by condition (a), the respective probability is $P(E_k) = 1/N$ with k > n.

Let F_k denote the event described by condition (b). Then the probability that F_k occurs, i.e., that the highest rank of the first k-1 terms appears in the first n terms, is $P(F_k) = n/(k-1)$.

 S_n is a winning strategy if both conditions (a) and (b) are satisfied. Since events E_k and F_k are independent, and all E_k events are exclusive and exhaustive alternatives, we have

$$P_{N}(S_{n}) = \sum_{k=n+1}^{N} P(E_{k} \cap F_{k})$$

= $\sum_{k=n+1}^{N} P(E_{k}) \cdot P(F_{k}) = \frac{n}{N} \cdot \sum_{k=n+1}^{N} \left(\frac{1}{k-1}\right)$ (1)

This is the desired expression for the probability of success for any strategy S_n and for any number N of items one cares to choose from. The $P_N(S_n)$ expression is also valid for n = N - 1, in which case it equals

$$P_N(S_{N-1}) = [(N-1)/N] \cdot [1/(N-1)] = 1/N,$$

as it should be.

Since we have made no assumptions about the distribution of items, we safely say that the S_n decision rule is general.

6. THE PROBABILITY SPECTRUM FOR THE WINNING STRATEGIES. The $P_N(S_n)$ general expression in (1) provides a powerful tool for evaluating the probabilities of winning for all S_n strategies without actually having to list the possible orderings and count the corresponding winning frequencies. Table 4 exemplifies this point for N = 1, 2, ..., 20 and all possible strategies $S_n, 0 \le n \le N$ - 1. Every entry is the probability of success of a strategy S_n when the number of items is N, expressed with four significant digits.

7. OPTIMAL STRATEGIES. Each column in Table 4 possesses a maximum probability for some value of N. For example, in columns S_4 and S_7 , the probabilities of success are 0.3984 for N = 11 and 0.3850 for N = 19. Furthermore, we see that every row corresponding to a particular N-value possesses a maximum probability of success for some strategy. For example, the maximum probabilities of success for N = 10 and N = 16 are 0.3987 and 0.3881, respectively, and they correspond to strategies S_3 and S_6 , respectively.

The emerging pattern of optimal strategies may be expressed by the following statements:

- (a) To every number N of items there corresponds one strategy S_n with a maximum probability of success, and conversely,
- (b) every possible strategy S_n is optimal for a particular number N of items.

N	S ₀	S_1	S_2	S ₃	S4	S5	S ₆	S 7	S ₈	S9	S10	S 11	S12	S13	S14	S15	S16	S17	S18	S19
1	1.0000																			
2	0.5000	0.5000																		
3	0.3333	0.5000	0.3333																	
4	0.2500	0.4583	0.4167	0.2500																
5	0.2000	0.4167	0.4333	0.3500	0.2000															
6	0.1667	0.3806	0.4278	0.3917	0.3000	0.1667														
7	0.1429	0.3500	0.4143	0.4071	0.3524	0.2619	0.1429													
8	0.1250	0.3241	0.3982	0.4098	0.3798	0.3185	0.2321	0.1250												
9	0.1111	0.3020	0.3817	0.4060	0.3931	0.3525	0.2897	0.2083	0.1111											
10	0.1000	0.2829	0.3658	0.3987	0.3983	0.3728	0.3274	0.2653	0.1889	0.1000										
11	0.0909	0.2663	0.3507	0.3897	0.3984	0.3844	0.3522	0.3048	0.2444	0.1727	0.0909									
12	0.0833	0.2517	0.3366	0.3800	0.3955	0.3902	0.3683	0.3324	0.2847	0.2265	0.1591	0.0833								
13	0.0769	0.2387	0.3236	0.3700	0.3907	0.3923	0.3784	0.3517	0.3141	0.2668	0.2110	0.1474	0.0769							
14	0.0714	0.2272	0.3114	0.3600	0.3848	0.3917	0.3843	0.3651	0.3356	0.2972	0.2508	0.1973	0.1374	0.0714						
15	0.0667	0.2168	0.3002	0.3503	0.3782	0.3894	0.3873	0.3741	0.3513	0.3202	0.2817	0.2366	0.1853	0.1286	0.0667					
16	0.0625	0.2074	0.2898	0.3409	0.3712	0.3859	0.3881	0.3799	0.3627	0.3377	0.3058	0.2676	0.2238	0.1747	0.1208	0.0625				
17	0.0588	0.1989	0.2801	0.3319	0.3641	0.3816	0.3873	0.3832	0.3708	0.3509	0.3246	0.2923	0.2547	0.2122	0.1652	0.1140	0.0588			
18	0.0556	0.1911	0.2711	0.3233	0.3569	0.3767	0.3854	0.3848	0.3763	0.3608	0.3392	0.3120	0.2798	0.2429	0.2018	0.1567	0.1078	0.0556		
19	0.0526	0.1840	0.2626	0.3150	0.3498	0.3715	0.3827	0.3850	0.3799	0.3682	0.3506	0.3278	0.3001	0.2681	0.2321	0.1923	0.1490	0.1023	0.0526	
20	0.0500	0.1774	0.2548	0.3072	0.3429	0.3661	0.3793	0.3842	0.3820	0.3734	0.3594	0.3403	0.3167	0.2889	0.2573	0.2221	0.1836	0.1420	0.0974	0.0500

TABLE 4. Probabilities of Success for Strategies (N = 1 to 20)

For fixed N, the winning probabilities for any two successive strategies, S_n and S_{n+1} , differ by

$$\Delta P_{(n)} = P_N(S_{n+1}) - P_N(S_n) = \frac{1}{N} \left[\sum_{k=n+2}^N \left(\frac{1}{k-1} \right) - 1 \right].$$
(2)

The optimal strategy corresponds to the smallest *n* that makes $\Delta P_{(n)}$ negative. Therefore, the best *n* for a given fixed *N* is the least *n* such that

$$\sum_{k=n+2}^{N} \left(\frac{1}{k-1}\right) = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{N-1} < 1.$$
(3)

For fixed *n*, the winning probabilities of S_n for any two consecutive *N*-values, *N* and N + 1, differ by

$$\Delta P_{(N)} = P_{N+1}(S_n) - P_N(S_n) = \frac{n}{N(N+1)} \left[1 - \sum_{k=n+1}^N \left(\frac{1}{k-1} \right) \right].$$
(4)

It follows that S_n is best for the smallest N-value that makes $\Delta P_{(N)}$ negative. Therefore, the best N for a given fixed strategy S_n is the least N such that

$$\sum_{k=n+1}^{N} \left(\frac{1}{k-1} \right) = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{N-1} > 1.$$
 (5)

The latter condition expands our computational and conceptual horizons of the problem considerably. Table 5 presents the N-values where specific S_n strategies (fixed n) become most appropriate, i.e., they attain the maximum possible probability of success. This probability is also maximum when all possible S_n strategies are compared for the same N.

8. GEOMETRIC EVALUATION OF PROBABILITY FOR OPTIMAL STRATE-GIES. The treatment of the problem may be extended still more with quite interesting results. In what follows we shall consider condition (5) for optimal strategies within the realm of the real number continuum. Consequently, we shall deduce an efficient rule for identifying the best N-value for any S_n strategy.

Every term of the sum in (5), say the term 1/m, may be represented as the area of the rectangle $m_-M_-M_+m_+$ (see Figure 1) with base $(m_-m_+) = 1$ and height (Mm) = 1/m. Evidently, M is a point on the hyperbola y = 1/x. The area (LM_-M) below the hyperbola is

$$E = (LM_{-}M) = \int_{m-1/2}^{m} \left(\frac{1}{x} - \frac{1}{m}\right) dx = \ln\left(\frac{2m}{2m-1}\right) - \frac{1}{2m}.$$
 (6)

Similarly, the area (MM_+N) above the hyperbola is

$$\varepsilon \equiv (MM_{+}N) = \int_{m}^{m+1/2} \left(\frac{1}{m} - \frac{1}{x}\right) dx = \frac{1}{2m} - \ln\left(\frac{2m+1}{2m}\right).$$
(7)

n	Ν	Pr (%)		n	Ν	Pr (%)	n	Ν	Pr (%)	n	Ν	Pr (%)
1	3	50.00		26	70	37.24	51	138	37.02	76	206	36.94
2	5	43.33		27	73	37.22	52	141	37.01	77	209	36.94
3	8	40.98		28	76	37.21	53	144	37.01	78	212	36.94
4	11	39.84		29	78	37.19	54	146	37.00	79	214	36.94
5	13	39.23		30	81	37.18	55	149	37.00	80	217	36.93
6	16	38.81		31	84	37.17	56	152	37.00	81	220	36.93
7	19	38.50		32	87	37.15	57	155	36.99	82	223	36.93
8	21	38.28		33	89	37.14	58	157	36.99	83	225	36.93
9	24	38.12		34	92	37.13	59	160	36.99	84	228	36.93
10	27	37.98		35	95	37.12	60	163	36.98	85	231	36.93
11	30	37.87		36	98	37.11	61	165	36.98	86	233	36.92
12	32	37.78		37	100	37.10	62	168	36.98	87	236	36.92
13	35	37.70		38	103	37.10	63	171	36.97	88	239	36.92
14	38	37.63		39	106	37.09	64	174	36.97	89	242	36.92
15	40	37.57		40	108	37.08	65	176	36.97	90	244	36.92
16	43	37.53		41	111	37.07	66	179	36.96	91	247	36.92
17	46	37.48		42	114	37.07	67	182	36.96	92	250	36.91
18	49	37.44		43	117	37.06	68	184	36.96	93	252	36.91
19	51	37.41		44	119	37.05	69	187	36.96	94	255	36.91
20	54	37.38		45	122	37.05	70	190	36.95	95	258	36.91
21	57	37.35		46	125	37.04	71	193	36.95	96	261	36.91
22	59	37.32		47	127	37.04	72	195	36.95	97	263	36.91
23	62	37.30		48	130	37.03	73	198	36.95	98	266	36.91
24	65	37.28		49	133	37.03	74	201	36.95	99	269	36.91
25	68	37.26		50	136	37.02	75	204	36.94	100	271	36.90

TABLE 5. A Practical Guide on Making the Optimal Decision when Choosing the Best out of a Number N of Contestants Presenting Themselves in Sequence

Decision Rule: Let n of out N contestants pass, rank them in order of desirability, and then choose the first contestants who rank higher.

Consequently, the area of the region LM_M is larger than the area of the region MM_+N , i.e., $E > \varepsilon$, since

$$E - \varepsilon = \ln\left(\frac{2m+1}{2m-1}\right) - \frac{1}{m} = 2\left[\frac{1}{3(2m)^3} + \frac{1}{5(2m)^5} + \frac{1}{7(2m)^7} + \cdots\right] > 0.$$
(8)

Therefore, we have

$$\ln\left(\frac{2m+1}{2m-1}\right) = \int_{m-1/2}^{m+1/2} \left(\frac{1}{x}\right) dx > \frac{1}{m}.$$
 (9)

Summing up for m = n, n + 1, ..., N - 1 gives

$$\int_{n-1/2}^{N-1/2} \left(\frac{1}{x}\right) dx > \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{N-1}.$$
 (10)

For optimal strategies, (5) ensures that the right-hand side of (10) is larger than 1. Thus, the optimal N-value for a fixed S_n strategy is the smallest N that satisfies

$$\ln\!\left(\frac{2N-1}{2n-1}\right) > 1.$$

Thus, the best N for a given fixed strategy S_n is the least N such that

$$N > e\left(n - \frac{1}{2}\right) + \frac{1}{2} \tag{11}$$

The corresponding probability of winning $P_N(S_n)$ has an upper bound

$$P_N(S_n) \equiv Pr(\Sigma) < Pr(f) \equiv \frac{n}{N} \ln\left(\frac{2N-1}{2n-1}\right).$$
(12)

9. THE ASYMPTOTIC BEHAVIOR OF STRATEGIES. Having established two alternative ways of evaluating the probabilities of success for strategies—sums (1) and integrals (12)—we are now in a position to compute these probabilities for large values of N and compare the results. Table 6 displays:

- (i) the characteristic optimal (n, N) pairs for large N,
- (ii) the respective ration (n/N),
- (iii) the corresponding probability of success derived by sums, denoted as $Pr(\Sigma)$, and
- (iv) the probability of success derived by the integral approximation, denoted as Pr(f) in (12).

From Table 6 we see that the probabilities calculated by (1) and (12) both decrease as *n* increases and they start to (a) coincide (within six significant figures) from the entry (n = 300, N = 815) onwards, and (b) converge to 0.367879 from the entry (n = 2,000,000, N = 5,436,563). We also observe that the ratio (n/N) converges to the very same number 0.367879. This latter number is e^{-1} .

Thus, we conclude that the two distinct characteristic quantities of optimal strategies, i.e., the ratio (n/N) and the probability of success, both converge to the same limit as $N \to \infty$.

This conclusion may also be derived formally. Since the best N for any S_n strategy is defined as the least N-value satisfying (11), we have 2N > 2en + (1 - e) for N, and $2en + (1 - e) \ge 2(N - 1)$ for the immediately lower value, N - 1.

n	Ν	n/N	$Pr(\Sigma)$	Pr(∫)			
100	271	0.369004	0.369045	0.369046			
200	543	0.368324	0.368461	0.368462			
300	815	0.368098	0.368267	0.368267			
400	1087	0.367985	0.368170	0.368170			
500	1359	0.367918	0.368112	0.368112			
600	1631	0.367872	0.368073	0.368073			
700	1902	0.368034	0.368046	0.368046			
800	2174	0.367985	0.368025	0.368025			
900	2446	0.367948	0.368009	0.368009			
1000	2718	0.367918	0.367996	0.367996			
2000	5436	0.367918	0.367938	0.367938			
3000	8154	0.367918	0.367918	0.367918			
4000	10873	0.367884	0.367909	0.367909			
5000	13591	0.367891	0.367903	0.367903			
6000	16309	0.367895	0.367899	0.367899			
7000	19028	0.367879	0.367896	0.367896			
8000	21746	0.367884	0.367894	0,367894			
9000	24464	0.367888	0.367892	0.367892			
10000	27182	0.367891	0.367891	0.367891			
20000	54365	0.367884	0.367885	0.367885			
30000	81548	0.367881	0.367883	0.367883			
40000	108731	0.367880	0.367882	0.367882			
50000	135914	0.367880	0.367882	0.367882			
60000	163097	0.367879	0.367881	0.367881			
70000	190279	0.367881	0.367881	0.367881			
80000	217462	0.367880	0.367881	0.367881			
90000	244645	0.367880	0.367881	0.367881			
100000	271828	0.367880	0.367881	0.367881			
200000	543656	0.367880	0.367880	0.367880			
300000	815484	0.367880	0.367880	0.367880			
400000	1087312	0.367880	0.367880	0.367880			
500000	1359141	0.367879	0.367880	0.367880			
600000	1630969	0.367879	0.367880	0.367880			
700000	1902797	0.367879	0.367880	0.367880			
800000	2174625	0.367880	0.367880	0.367880			
900000	2446453	0.367880	0.367880	0.367880			
1000000	2718281	0.367880	0.367880	0.367880			
2000000	5436563	0.367879	0.367879	0.367879			

TABLE 6. Probabilities of Success for Strategies when N is Large

Hence we have

$$\frac{1}{e}\left(1-\frac{1}{N}\right) \le \frac{n}{N} - \frac{1}{2eN}\left(\frac{1}{e} - 1\right) < \frac{1}{e}.$$
(13)

It follows that $\lim_{N\to\infty} (n/N) = 1/e$ and, consequently, (12) gives $\lim_{N\to\infty} P_N(S_n) = 1/e$. Concluding, we may state the following *Golden Rule* for decisions:

The optimum strategy is to wait until e^{-1} of the items pass and then select the next relatively best one. The probability of success for the optimum strategy is e^{-1} .

DECISION MAKING: A GOLDEN RULE

[March

к	ne - (e - 1) / 2 { $n = 10^{\kappa}$ }	n(rounded up)
1	26.32	27
2	270.97	271
3	2717.42	2718
4	27181.96	27182
5	271827.32	271828
6	2718280.97	2718281
7	27182817.43	27182818
8	271828181.99	271828182
9	2718281827.60	2718281828
10	27182818283.73	27182818284
11	271828182845.05	271828182846
12	2718281828458.19	2718281828459
13	27182818284589.59	27182818284590
14	271828182845903.66	271828182845904
15	2718281828459044.38	2718281828459045
16	27182818284590451.49	27182818284590452
17	271828182845904522.68	271828182845904523
18	2718281828459045234.50	2718281828459045235
19	27182818284590452352.74	27182818284590452353
20	271828182845904523535.17	271828182845904523536
21	2718281828459045235359.43	2718281828459045235360
22	27182818284590452353602.02	27182818284590452353603
23	271828182845904523536027.89	271828182845904523536028
24	2718281828459045235360286.61	2718281828459045235360287
25	27182818284590452353602873.85	27182818284590452353602874
26	271828182845904523536028746.28	271828182845904523536028747
27	2718281828459045235360287470.49	2718281828459045235360287471
28	27182818284590452353602874712.67	27182818284590452353602874713
29	271828182845904523536028747134.41	271828182845904523536028747135
30	2718281828459045235360287471351.80	2718281828459045235360287471352
31	27182818284590452353602874713525.77	27182818284590452353602874713526
32	271828182845904523536028747135265.39	271828182845904523536028747135266
33	2718281828459045235360287471352661.64	2718281828459045235360287471352662
34	2/182818284590452353602874713526624.12	27182818284590452353602874713526625
35	2/1828182845904523536028747135266248.92	271828182845904523536028747135266249
36	2/182818284590452353602874/1352662496.90	2718281828459045235360287471352662497
37	2/182818284590452353602874713526624976.71	2/182818284590452353602874713526624977
38	2/1828182845904523536028747135266249774.87	271828182845904523536028747135266249775
39	2/18281828459045235360287471352662497756.39	2718281828459045235360287471352662497757
40	2/182818284590452353602874713526624977571.61	27182818284590452353602874713526624977572

TABLE 7. The Pyramid e-Expansion of N for Optimal Strategies

Having established that the golden rule for decisions is associated with e, it is interesting to note that when n takes as values the successive integer powers of 10, the corresponding values of N generate the decimal expansion of e. This is illustrated in Table 7.

ACKNOWLEDGMENTS. We thank our students Miss A. Demosthenous, Mr. A. Giouzenis, Miss E. Hondrou, and Mr. C. Nakos for their contributions to the editing of this work.

REFERENCES

- 1. B. H. Bissinger and C. Siegal, Problem 5086, Amer. Math. Monthly 70 (1963) 336.
- A. J. Bosch, Solution to Problem 5086: Optimum strategy in a guessing game, *Amer. Math. Monthly* 71 (1964) 329–330.

- 3. Y. S. Chow, S. Moriguti, H. Robbins, and S. M. Samuels, Optimal Selection based on relative rank (The "Secretary" problem), *Israel J. Math* 2 (1964) 81–90.
- 4. E. B. Dynkin, The optimum choice of the instant for stopping a Markov process, *Soviet Math. Dokl.* 4 (1963) 627–629.
- 5. T. S. Ferguson, Who solved the secretary problem?, Statist. Sci. 4 (1989) 282-296.
- 6. P. R. Freeman, The secretary problem and its extensions—A review, *Internat. Statist. Rev.* 51 (1983) 189–206.
- 7. M. Gardner, Scientific American 202 (1960) 150-153.
- J. Gilbert and F. Mosteller, Recognizing the maximum of a sequence, J. Amer. Statist. Assoc. 61 (1966) 35-73.
- 9. D. V. Lindley, Dynamic programming and decision theory, Appl. Statist. 10 (1961) 39-51.

DIMITRIS A. SARDELIS received his Ph.D from Imperial College where he worked on quantum field theories under the supervision of Abdus Salam. He has been teaching at the American College of Greece since 1991. He is interested in the foundations of geometry, stochastic processes, and higher arithmetic.

THEODOROS M. VALAHAS received his B.S. from Aristoteles University of Thessaloniki, Greece and his Ph.D. from Massachusetts Institute of Technology. After spending some years in industry he returned to the academic community. He co-ordinates the math and science group of the American College of Greece. His interests are classical fundamental problems in kinematics, dynamics, number theory, probabilities, and statistical decision theory.

Department of Sciences & Mathematics, The American College of Greece, Aghia Paraskevi, Athens GR-15342, Greece dereef@hol.gr

There is a sibling rivalry between this conjecture and its negation and I, poor mother throw up my hands. "Anything, anything. "Whatever you decide. "Just please "hurry up "and make up your mind." Contributed by Marion Cohen, Drexel University, Philadelphia, PA