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A Tale of Two Integrals 

Vilmos Totik 

1 THE PROBLEM. We present several approaches to a simple-looking but highly 
nontrivial combinatorial-analysis problem. Our aim is to show how different ideas 
can lead to a solution. 

The problem is easy to state: Let f and g be two integrablefunctions o n  [0, 11 with 

Show that there is some interval I c [O,1] such that 

Instead of [0, 11 we could have any interval, and f and g need not have integrals 
equal to 1; the general statement is that there is always a single interval where 
each function has integral equal to one half of its total integral. 

Here is an equivalent formulation without integrals: O n  a blackjack machine one 
can win or lose one dollar at a time. Suppose two players playing once per minute 
during a period find that eventually both of them win exactly 2N dollars. Show that 
there was a time interval during which both of them won exactly N dollars. 

We sketch the equivalence of the two forms. The second form is a consequence 
of the first if we apply it to some appropriate step functions f and g with values 
-+ 1 modelling the outcome of the blackjack games (see Figure 1). Then there is an 
interval ( a ,  b )  over which both f and g have integral N. If both a and b are 
integers, then going back to the blackjack game we get a time interval with the 
desired properties. If they are not, then with some 0 < a < 1 we have a = [ a ]+ a 

outcome of the game: 

first player second player 

the associated functions: 

Figure 1. The equivalence of the two formulations 
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and b = [b] + a.  If a # $, then the integrals of f and g over ([a], [b]) are again 
equal to N, so we are back at the integer case. This is also true if a = and both 
functions have the same sign at a and b. Finally, if a = and one of them has 
different signs at a and b, then a simple parity argument (based on the fact that 
two sums of the form C;=, + 1are equal or differ by an even integer) shows that 
the same is true of the other function, and then the integrals over ([a] + 1, [b]) are 
again N. 

In the opposite direction suppose the blackjack statement is true, and let f and 
g be two functions satisfying (1). We can assume (see below) f and g to be 
bounded, say I f I I M, I g 1 I M. Then the graphs of the functions 

can be arbitrarily well approximated by piecewise linear curves with equidistant 
nodes and slopes $1. Now the slope functions of these curves can be regarded as 
the outcome of blackjack games for two players (+ 1stands for winning and -1for 
losing a dollar), so the second formulation can be applied. Going from here to (2) 
is a routine limiting process to be discussed below. 

We shall adhere to the first formulation, though the precise notion of "integra- 
ble" is irrelevant. In fact, the problem is not easier if we assume that f and g are 
continuous, or that they are step functions. To see this it is enough to note the 
following. Suppose that f, and g, are functions satisfying (1) such that 

and suppose we can verify the existence of intervals I, = (a,, b,) satisfying (2) for 
the pairs f,, g,. By selecting a subsequence N, of the natural numbers for which 
{a,), N1 and {b,), , converge to some a and b, we can show that (2) holds for 
I = (a, b). Thus, without loss of generality we may assume that f and g belong to 
any chosen dense subspace of the space of integrable functions, for example the 
space of continuous functions or the space of step functions. 

We present several solutions to the problem that are related to other combina- 
torial or geometrical/topological results. Some of these solutions are genuinely 
different, some are interrelated, but all of them use some well known facts of 
mathematics. Other approaches are also known, but none of the elementary 
solutions (that mainly use induction) I know is short enough to present in one or 
two pages. 

The problem appeared on the 1995 Mikl6s Schweitzer Mathematical Contest in 
Hungary. This is a unique mathematical contest organized every fall since 1949 by 
the J6nos Bolyai Mathematical Society. It is a contest for university students and 
fresh graduates, but sometimes talented high school students also successfully 
participate. About a dozen problems (almost exclusively new) are proposed from 
different branches of mathematics, and the students have 10 days to solve them 
using all available literature. Accordingly, the problems are considerably more 
difficult than on other mathematical competitions and olympiads. The problems 
and solutions from the contests in the years 1962-1991 have been published in the 
Springer Problem Book series: Contests in Higher Mathematics, Ed. G. J. Szkkely, 
1995. 

The problem is more difficult than one might expect. In fact, the very first 
thought, namely continuously move the endpoints a and b of I = (a, b), leads to 
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big obstacles. The argument would run like this: there is an a, such that for each 
0 4 a 4 a, there is a b, with /:of = 3.If /tog = i, then we are done. If, say, 
/ g o g  < i ,  then we must have /,log > i .  Therefore if we continuously move a from 
0 to b,, there will be a value of a for which the integral 1,b.g is exactly 3, and so 
I = (a,  b,) is suitable. The problem with this reasoning is that b, does not depend 
continously on a, and the whole argument collapses. Even worse than that, in 
general there is no continuous function b(a) such that 

for all a E [0, a,] (see Figure 2). Thus, the preceding reasoning cannot be 
rectified. 

Figure 2. No continuous b(a) exists 

This simple continuity argument does work if f is strictly positive, for then there 
is a single b(a) satisfying (3), and the function b(a) is continuous. By adding E to f 
and then letting E + 0 we can conclude that the same is true for nonnegative f. 
Let us also mention that for piecewise constant f there are continuous functions 
a(t), b(t) on the parameter interval [O,1] such that 

a(0) = 0, a(1) = b(O), and b(1) = 1, so a continuity argument like the one before 
can be applied. However, proving the existence of a(t) and b(t) is as difficult as 
the original problem. 

2 THE BORSUK-ULAM ANTIPODAL THEOREM. The Borsuk-Ulam Theorem 
[I,p. 2411 states that if T :s2+ R2 is a continuous mapping of s2(the unit sphere in 
R ~ )into the plane, then there exists a pair of antipodalpoints {X, -X) of s2that have 
the same image: T(X)  = T(-X). If T is also odd, i.e., T(-Y) = -T(Y) for all 
Y E s 2 ,  then we must have T(X)  = (0,O). The same is true in higher dimensions, 
namely if T :S' + R' is a continuous mapping of the unit sphere in R" l,  then 
there exists a pair of antipodal points {X, -X) on S' that have the same image. 

Using the Borsuk-Ulam Theorem, the solution of our problem is easy. Let 
(Cl, C2, C3), 5: + CZ2 + C3' = 1be a point on S2, and let 

T(Cl,&,C3) = ( X ( f ;  51, (2, 531, X ( g ;  61, 62, 5311, 
where 
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Since T is a continuous odd mapping of s2into the plane, the Borsuk-Ulam 
theorem ensures that some point (t:, t2*, t3*) is mapped into (0,O) by T .  Among 
the numbers [,*, t2*, t3*, two have the same sign (consider 0 to be of positive 
sign). If the third number is ti*, and I denotes the interval of length tj*2in the 
integral multiplied by sign (tj*) in (5) ,  then from the definition of T and from 
T(t,*, t2*, t3*) = (0,O) it follows that 

The claim follows with this I if we also take into account the conditions / i f  = 

/;g = 1. 
The Borsuk-Ulam theorem is a standard tool in solving the following necklace 

of pearls problem. Two pirates have a single-strand necklace containing 2 k  black 
pearls and 2 k  white pearls arranged in any order. They would like to cut the necklace 
into as few pieces as possible so that after dividing the pieces of the necklace between 
them, each gets exactly k white pearls and k black ones. An easy modification of the 
preceding solution permits us to conclude that two cuts are always enough (i.e., 
there is always a sequence of 2 k  consecutive pearls on the necklace that contains k 
pearls of each type). This is related to the case of our original problem where both 
functions (representing the two types of pearls on intervals of equal lengths, see 
Figure 3) are nonnegative; hence we do not need the antipodal theorem, as 

the necklace of pearls 

the associated functions: 

t t 

Figure 3. Reduction of the pearl problem 

the solution follows by a simple continuity argument. If the necklace contains 1 
types of pearls, and there are 2 k  pearls of each type, we can apply the 
higher dimensional version of the Borsuk-Ulam theorem to show that 1 cuts are 
always enough. 

In a similar manner, by applying the antipodal theorem in higher dimensions we 
get the following generalization of our original problem due to A. Pinkus: i f  
f , ,  . . . ,f, E L'[O, 11and /if,= 1 for all j = 1, . . . , 1 ,  then there is a set I consisting of 
at most (I + 1)/2 intervals such that /,f, = for all j = 1, .  . . ,1. 

3 THE MOUNTAIN CLIMBING PROBLEM. Can two climbers climb up opposite 
sides of a mountain to the top in such a way that both of them are always at the 
same altitude (see [7] and [9])? There are some obvious obstacles that prevent 
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them from doing so, however, the answer is YES if the sides of the mountain are 
piecewise linear curves and the climbers start at the bottom [6]. We show that this 
result implies a solution to our problem. 

Assume, as we may, that both f and g are piecewise constant. Then 

is piecewise linear, and H(0) = H(1), so we can extend H to a continuous 
1-periodic function. Let us also extend f and g periodically to R with period 1. 
The graph of H is our "mountain" (see Figure 4), and two climbers climb from the 

I 

I* modulo 1 complement of I* 

Figure 4. The mountain of the two climbers 

bottom level of that mountain, say from the points x, and x, + 1, to one of the 
maximum points of H in [x,.x, + 11, say to the peak at x,. According to [6] they 
can do so and stay always at the same level. Now by the periodicity, we can assume 
that both climbers start at x,, the first one climbs to the right to the peak at x,, 
while the second one climbs to the left to the peak at x, - 1. Let the x coordinate 
of the two climbers at time t 6 [O, 11 be y,(t) and y2(t). Thus, the yj are 
continuous functions such that y,(O) = y2(0) = x,, y,(l) = x,, y2(l) = x, - 1, and 
at every moment y2(t) I x, I y,(t). Since the climbers always stay at the same 
altitude, we have 

/'""f( u )  du = /Y1't)g(u) du. 
'2(t) ~ 2 0 )  

However, the left integral is zero for t = 0, is 1 for t = 1 since [y2(l); y,(l)] = 

[x, - 1, x,] is a full period for f ,  and is a continous function of t, so there is a 
t = t* for which the left-hand side is equal to i .  But then the right hand side is 
also i ,  which means that for I*= [y2(t*), y,(t*)] we have 

This seems to be what we are looking for, but we have to be careful, for the 
interval I *  may not belong to [0, 11 (or for that matter to some [n, n + 11with 
integer n). If it does, then we just set I = I*.If not, then we can take as I its 
complement in [O,l] modulo 1(see Figure 4), which, in view of (I), satisfies (2). 

This solution yields the following generalization. Let f and g be integrable 
functions on [0, 11 satisfying (I), and let 0 < a < 1. If there is no interval I c [O,1] 

19991 A TALE OF TWO INTEGRALS 231 



then there is an interval I with 

Our proof gives I = I* for a if I*c [0, 11; if I*C [O, 11, then its modulo 1 
complement is suitable for I in (7). 

Thus, for any given a 6 (0, I), there is always an interval I where the integrals 
of both f and g equal either a or 1 - a . For a = this means that both f and g 
have integrals i, as is claimed in the problem. For a = 3 there is an interval I 
such that either both functions have integral 3 on I ,  or both of them have integral +. 
In the latter case we can apply the already proven +-case to I ,  and conclude that 
on some subinterval of I both functions have integral equal to (2/3)/2 = 3. Thus, 
there is an interval with both integrals equal to i.This argument can be repeated, 
to obtain an interval over which both integrals equal any given value b, f, . . . . This 
is a generalization of the original problem: Let f and g be two integrablefunctions on 
[O, 11satisfying (1) and let k be a positive integer. Then there is an interval I such that 

This is false for every a 6 (0, l )  that is not of the form a = l /k .  In fact, if 
f(x) = (2n + l)/(n + 1) if 2k/(2n + 1) 1 x 5 (2k + 1)/(2n + 1) (k = 0, 
1 , .  . .,n) and 0 otherwise, and if g(x) = (2n + l)/n if (2k - 1)/(2n + 1) I x I 
2k/(2n + I)  (k = 1,2, .  . . ,n) and 0 otherwise, then for no a E ((n + I)-', n - l )  is 
there an interval I for which 

(see Figure 5 where the n = 1case is displayed). 

Figure 5. No common intervals for i< a < 1 

4 THE CHORD THEOREM. The chord theorem [3, pp. 21 and 198-1991 states 
that if y is a continuous curve on the plane with endpoints A and B, then for every 
positive integer k there is a chord aof y (i.e., C , D 6 Y)  that is parallel to AB and 
has length l / k  times the length of z. 
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Apply the chord theorem to the curve 

with k = 2. Since y has endpoints (0,O) and (1, I), it has a chord of the form 
( X ,  Y ) ( X  + $, Y + $), i.e., if we choose parameters t,, t, E [O, 11 such that 
y(tl)  = (X,Y) and y(t,) = ( X  + $, Y + $), then 

and we seem to have solved the problem. However, I. Z. Ruzsa observed that we 
might have t, < t,, i.e., if I is the interval determined by the parameters t, and t, 
(which is [t,, t,] for t, < t,), then (9) means that on I both functions have integral 
- -,,1 instead of i,so the chord theorem does not give us what we want. 

Our approach via the chord theorem can be saved as follows. Assume, as we 
may, that f and g are piecewise constant functions that do not vanish on any 
subinterval. Select a maximal subinterval J, c [0, 11 such that the integrals of f 
and g over J, are equal, and the common value of the integrals is either zero or a 
positive integer multiple of - 3.Then select a maximal subinterval J, c [0, 11 
disjoint ?om J, such that the integrals of f and g over J, are equal, and the 
common value of these integrals is either zero or a positive integer multiple of 
- -,.1 Continue this process by always selecting maximal subintervals that are 
disjoint from all previously selected subintervals. We claim that this process must 
terminate in finitely many steps. If not, then there was an infinite family of disjoint 
subintervals over which the integral of f is zero or a positive integer multiple of 
- -,.1 That the integral cannot be a positive multiple of - 3 for infinitely many 

disjoint subintervals is clear. Hence, there are infinitely many disjoint intervals 
over which f has zero integrals. However, this is again impossible, because every 
such interval must contain a discontinuity point of f ;  recall that f is piecewise 
constant with nonzero function values. 

Let the selected maximal intervals be J,, . . .,J,. Contract each of the J,'s to a 
single point (see Figure 6). We obtain an interval [0, a], an integer k 2 2, and two 
functions f * and g* such that 

contracting J, 

Figure 6. Contracting the Jk's 
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Note that we have removed subintervals from [O,1] over which the integrals were a 
nonnegative integer multiple of - i .  Now apply the l / k  version of the chord 
theorem to this pair. As before, we get a subinterval I*of [a,  b] such that f * and 
g *  have equal integrals over I* ,  and the common value of these integrals is f i .  
Let I be the subinterval of [O,l] that corresponds to I*under the contraction 
when we removed the intervals J,. If the integral over I*of f * and g *  is - i ,  
then I cannot contain J, by the maximality of J,, so I and J, are disjoint. For the 
same reason I cannot contain J,, or J,, etc. Thus, I is a subinterval disjoint from 
every J, over which both f and g have integral - 3, which is impossible, since the 
system {J,),"=, is maximal. 

Therefore, the integral of f * and g*  over I*is i.But then I can contain only 
Jk7s over which the integral of f and g is zero, for otherwise the integral over I 
would be zero or a positive multiple of - i ,  and this would contradict the 
maximality of the first J, that is contained in I. Therefore, I contains only 
intervals J, over which both f and g have integrals zero, so the integrals of f and 
g over I are the same as those of f * and g *  over I* ,  which is i .  Therefore, this I 
is suitable. 

5 THE CHESS KING-MOVING THEOREM. Suppose we color the squares of an 
n x n (chess) board with black and white arbitrarily. The chess king moving 
theorem (see [4], [51) asserts that a chess king can move eitherfrom the top row to the 
bottom row on black squares, or it can move fvom the leftmost column to the rightmost 
column on white squares. 

This statement is strong enough to prove the Brouwer fixed point theorem in 
two dimensions [5]. It also shows that in the following very entertaining game there 
is always a winner: two players B and W place alternately black and white disks on 
an n X x board. B's aim is to connect the upper and lower edges of the board by 
his black disks, while W wants to connect the left and right sides of the board by 
his white disks. The game Hex is identical to this one, except that it is played on a 
rhomboid-shaped board of hexagons. 

Now let us see how the chess king-moving theorem solves our problem. We 
again extend the functions f and g to the whole real line as l-periodic functions, 
and, as we have already seen, it is sufficient to verify the existence of an interval I 
of length less than 1 somewhere on R satisfying property (2). The function 

attains its minimum at some point a .  This implies that 

for all x 2 a.  Therefore, by replacing f and g by f *(y) = f(a  + y)  and 
g*(y) = g(a + y), we can assume that 

for all y 2 0. Since the integral of both functions over an interval of length 1 is 1, 
this implies that for all y E [O, 11 
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is close to /if = 1, while cells in the bottom row contain diagonal points (x, y )  = 

(x, x) for which (14) is zero. Therefore, by (12), as the king moves from the upper 
row to the bottom row, it must pass through a black cell whose points satisfy 

and since this is a black cell, we also have 

What we have found is that for every 6 = l /n ,  n = 1,2, .  . . there are points 
0 I x, I y, 5 1such that 

From here the rest is standard: select a subsequence N, of the natural numbers for 
which {x,}, ., converges to some x and at the same time {y,}, converges to 
some y. Then the preceding inequalities easily yield 

which is what we had to verify. 

6 THE WINDING NUMBER THEOREM. Let A c R2 be the unit disk and let 
V:  A -+ R2 be a continuous vectorfield that does not vanish on the circumference. If 
the winding number of V on the circumference is not zero, then V must vanish 
somewhere on A [2, pp. 134-1351 or [I, pp. 255-2571. 

The term "vector field" comes from the fact that for every point P of A the 
value V(P) is a two dimensional vector, and we can think of placing the tail of this 
vector at the point P (see Figure 8). As we move around the circumference, the 

Figure 8. Vector field 

vector V(cos t, sin t )  is not zero and depends continously on t E [O, 2 ~ 1 ,  so the 
angle it forms with the positive half axis is also a continuous function A(t); we do 
not take the angle modulo 2rr. For the parameter value t = 2rr we arrive back 
again at the point (0, l )  associated with t = 0, so the vectors corresponding to 
these two parameter values are the same. Thus, A(2rr) must be equal to A(0) plus 
a positive multiple of 2rr. The winding number of V is (A(2rr) -A(0))/2rr, which 
is an integer. 
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The winding number theorem can be proved as follows: If the field does not 
vanish on A, then the winding number on circles {lzl = a} changes continuously 
with a. Since it is always an integer, it is constant. However, this constant is not 
zero for a = 1by assumption, and it is clearly zero for a = 0. This contradiction 
shows that the vector field must vanish somewhere. 

Let us see how this theorem solves the problem (a solution by Attila P6r). 
Consider the subtriangle D = {(x,  y)10 I x I y I 1) lying above the diagonal of 
the unit square, and for (x, y) E D let 

We have to show that the vector field U vanishes somewhere in D.  
Let cp :A + D be a continuous one-to-one mapping between the unit disk and 

D (a homeomorphism). Then V = U 0 cp defines a vector field on A,  and the 
vanishing of U is equivalent to the vanishing of V. If V vanishes somewhere on 
the boundary, then we are done. If not, then V defines a continuous vector field on 
A that does not vanish on the boundary. If its winding number is not zero, the 
winding number theorem ensures that V vanishes somewhere on A. Since p 
carries the vectors from the field U into the vectors of the field V, we can work 
directly on D, where the winding number of the field U is defined as the winding 
number of V. 

On the diagonal of the triangle the vector field U has the constant value 
( - i,- 3). Therefore, on this part of the boundary the field U does not rotate. If 
0 Ix I 1, then (1) shows that 

i.e., 

U(x, 1) = -U(O, x ) .  

It follows that the total winding of the field along the horizontal side of D is the 
same as the total winding along the vertical side (both travelled, say, in counter- 
clockwise direction), because the corresponding angles always differ by 7r .  Further-
more, since U(0,O) = (- +,- +),while U(0,l) = (+,+), the angles of these two 
vectors must differ by 2k7r + 7r for some integer k .  Therefore, the winding 
number of the field U along the boundary of D is 

and this is what we needed to prove. 

7 THE JORDAN CURVE THEOREM. The Jordan curve theorem [8] states that 
any continuous simple closed curve on the plane divides the plane into two connected 
components. 

To our problem we give a solution, due to Tam& Fleiner, that relies on an 
intuitively simple fact. We need the Jordan curve theorem to verify formally the 
intuitively obvious part. 

Assume, as we may, that both f and g are step functions. Extend both f and g 
to R as periodic functions with period 1, and let 

and 

Then for all x we have F(x + 1) = F(x)  + 1and G(x + 1) = G(x) + 1.Further-
more, F and G are continuous, so for the points a ,  b E [0, 11where F - G attains 
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its maximum and minimum, respectively, we have for all x 

A := F ( a )  - G ( a )  2 F ( x )  - G(x)  and 

The curve ~ ( x )  = (F(x), G(x)) is a union of line segments. We verify that there 
is a y E [O,l] and an y - 1 < x <y such that ~ ( y )  = ~ ( x )+ ( i ,  i ) .  If A = B, 
then F = G and we have the trivial case f = g .  If A # B, then by interchanging 
the role of F and G, respectively, we may assume a < b. The curve y(x) lies 
within the strip S determined by the lines x - y = A  and x - y = B, and the 
portion of y corresponding to the parameter values x E [a, b] connects the two 
bounding lines of this strip (see Figure 9). By replacing a by the largest value 

Figure 9. The two paths CD and EF have to intersect 

a' < b for which y(a') belongs to the lower bounding line x - y = A ,  and then 
replacing b by the smallest a' < b' for which y(bl) belongs to the upper bounding 
line x - y = B, we can also suppose that the curve 

r := {y( x )  la I x I b} 

lies strictly within the strip S except for its two endpoints. Now the points 
C := y(a) + (3, i )  and D := y(b) - (3, i )  cannot be connected by a continuous 
piecewise-linear path that does not leave S and does not intersect the curve r 
(look at the X-shaped figure in Figure 9). However, y(b) - ( i ,  i )  is y(b - 1) + ' ( i ,
i),so the two points C and D do lie on the curve y(x) + ( i ,  i ) ,  b - 1 < x < a. 
Hence, there must be a point of intersection, i.e., there is an x E (b - 1, a) and a 
y E (a, b) such that y(y) = y(x) + ( i ,  i ) .  Furthermore, b - 1 < x < a <y < b, 
so y - 1 < x <y. By the definition of the curve y, F(y)  - F(x) = i and G(y) -
G(x) = 3, i.e., both f and g have integral 3 on the interval [x, yl. The rest of the 
argument is now the same as in Section 4: if x 2 0, then the interval I = [x, y] 
satisfies the requirements. If, however, x < 0, then the interval I = [y, x + 11 is 
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suitable, for then 

and a similar calculation shows that the integral of g over I is again i. 
This proof is based on the fact that two curves in S, one connecting the points 

E and F and the other connecting the points C and D,  must intersect. This is 
intuitively clear, but for a formal verification we invoke the Jordan curve theorem 
stating that any continuous simple closed curve r on the plane divides the plane 
into two connected components. By a continuous simple closed curve we mean a 
continuous function T : [0, 11 + R' such that ~ ( 0 )  = d l ) ,  and for 0 I x <y < 1 
we have ~ ( x )  # ~ ( y )(i.e., the points on the curve are all different, except for the 
starting and ending points). The statement itself means that C \ T = U U V, where 
every point of U can be connected to any other point of U by a continuous 
piecewise-linear path lying in U, and similarly for V. Furthermore, no two points 
lying in U and V, respectively, can be connected by such a path not intersecting T. 
How do we know that we cross from one component (U or V) to another one? 
Well, this is certainly the case if we move along a segment that intersects T in 
exactly one point, and is perpendicular to a segment of r .  

The fact that r has a non-empty intersection with any continuous piecewise-lin- 
ear path connecting C and D within S now can be verified as follows. By removing 
loops from r we can assume that it is a simple curve. Then consider the curve r 
described in Figure 10. Moving along the segment CH we get from one connected 

Figure 10. The two paths CD and EF must intersect 

component of C \ r to the other one, so the points C and D are in different 
components of C \ T. Therefore, any continuous piecewise-linear path connecting 
C and D lying in S (e.g., {y(x)  lb - 1 < x < a)) must intersect r . But T n S = r, 
so every such path must intersect r itself, which is what we needed to prove. 

We have presented several solutions to our problem that were based on some 
known theorems from planar geometry and topology. Some of these theorems are 
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also interrelated and it is easy to see that the statement in our problem is actually 
equivalent to at least one of them, namely to the chord theorem. 
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From the MONTHLY50 years ago. . . 

The following reports of Summer Sessions to be held in 1924 
have been received. 

Universit)! of Chicugo, first term, June 16 to July 23; second term, 
July 24 to August 29. In addition to the usual courses in College ~ 
algebra, Plane analytic geometry, and Calculus, the following 1 

advanced courses are announced: By Profcssor G.  A. Bliss: 
Functions of a real variable; Thesis work in analysis. By Professor 
L. E. Dickson: Theory of Numbers, I; Thesis work in number ~ 
theory. By Professor H. E. Slaught: Elliptic integrals; Differential i 
equations. By Professor M. FrCchet: Theory of abstract sets; Theory I 
of probability. By Professor E. T. Bell: General theory of numbers; i 
Theory of equations. By Professor F. R. Moulton: Functions of 
infinitely many variables; Analytic mechanics, TI. By Professor 
E.  P. Lane: Synthetic projective geometry. By Doctor Mayme L. 
Logsdon, Introduction to higher algebra. 

. . . Voi. 31 (1924) 211 

240 	 A TALE OF TWO INTEGRALS [March 


