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A Mathematical Excursion: From 

the Three-door Problem 


to a Cantor-Type Set 


Jaume Paradis, Pelegri Viader, and Lluis Bibiloni 

1. INTRODUCTION. We invite you, reader, on a mathematical trip. Our starting 
point is a well-known problem, the three-door problem (also known as the Monty 
Hall problem); our endeavors to solve it take us to a beautiful representation 
system for the real numbers in (0,1] which, in turn, provides us with a nice 
enumeration of the positive rationals; as a bonus we can easily prove the irrational- 
ity of e. Our trip ends in the dark region of mysterious sets, where we find a simple 
description of a Cantor-type perfect set contained in (O,l]. 

2. STARTING POINT: THE THREE-DOOR PROBLEM. Mathematics has always 
been enriched by a diversity of games and intellectual curiosities. These have 
provided an endless supply of problems that have acquired a life of their own, far 
removed from the recreational aspect of their origins. For example, the first 
building blocks of probability owe their existence to the analysis of gambling games 
carried out by Fermat and Pascal in the beginning of the XVIIth century. 
Undoubtedly Fermat himself was much attracted to mathematics thanks to Bachet's 
Probl2mesplaisants et de'lectables of 1612 [I], which was an introduction to Bachet's 
most famous book: the Latin translation of Diophantus' Arithmetica, in whose 
margins Fermat wrote the note that made his major theorem famous. Another 
important instance, E. Lucas' Re'cre'ations Mathe'matiques [15], was a source of 
interesting problems at the beginning of the present century. 

Let us start our excursion by setting a simple problem in the form of a seemingly 
innocent game. 

2.1 The Three-Door Problem. In a TV contest, one of three shut doors hides a 
wonderful prize while the other two open onto a dismal void. The host proposes 
that the contestant choose one of the three doors. Then, as the contest rules 
establish, the host opens one of the other two doors wide showing the absence of 
any prize and offers the contestant the possibility of changing his/her choice. The 
contestant has to make a decision: to change or not to change. 

Our mathematical challenge is to help the contestant make this decision by 
finding the probability of both possibilities. A (widely accepted) solution to the 
problem assigns probability 1/3 to the option not to change and 2/3 to the option 
to change. One way to reach this conclusion is the following reasoning: 

The probability of choosing the right door in the first place is unquestionably 1/3. 
The probability that one of the other doors hides the prize is then 2/3. If we 
choose not to change when we are offered the chance, our door still has the same 
probability of success, 1/3, while now, the other door has a probability 2/3 of 
hiding the prize. 
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There are numerous references to this problem in the literature: see [22], [23], [26], 
[61 or 121. 

2.2 A Reformulation of the Problem. Now tackle the same problem with a slightly 
different setting: 

In a TV contest, the host randomly hides a single prize in one of several 
boxes. The contestant chooses a box and then the host-who knows where 
the prize is-picks a box different from the one the contestant chose, opens 
it, and shows the empty contents to the contestant and the audience. The 
empty box is then discarded and, at this point, the contestant is permitted to 
choose a new, different, box, or may stick with the old one. In the first case, 
the contestant chooses a new box and holds it, while all remaining boxes, 
together with the one rejected by the contestant, are jumbled randomly. The 
same process continues until two boxes are left: the one the contestant holds 
and another one. The contestant is then offered the last possibility of change. 
After that, a mathematician, having followed the whole process attentively, 
says: "The contestant's probability of winning is 11/42." 

A second mathematician, who has been fast asleep during the whole 
contest and does not know the initial number of boxes, but is familiar with 
the rules of the show, wakes up, hears the last utterance, and says: "From 
what my colleague says I deduce that initially there were 7 boxes and the 
contestant changed on two occasions, when there were 4 and 3 boxes to 
choose from." 

How did the two mathematicians reach their conclusions? 

We call the preceding reformulation and generalization of the three-door problem 
the n-box problem; boxes are more suitable than doors when it comes to jumbling 
them randomly. 

2.3 A Hint. We suggest our reader try to find the probability of each of the 2"-, 
possible strategies that our contestant can follow, if n is the initial number of 
boxes in the game. There are 2n-2 because any set of choices can be described as 
a string of 1and 0 (1 for changing and 0 for sticking) and there are n - 2 offers of 
change. 

A strategy can be represented by a strictly decreasing sequence of positive 
integers {n, a,, a,-,, . . . ,a,, a,) such that n > a, > a,-, > ... > a, > a, 2 1, 
where a i  denotes that a change of boxes was made when there were a i  boxes to 
choose from (notice that a, # n - 1): 

2.4 The Solution to the Problem. If no change whatsoever is made, the probability 
of winning is obviously l /n .  If a last-minute change is made (when there is only 
one box offered besides that initially chosen), the probability of winning is 
(n - l)/n. 

If we describe any other strategy by the convention described in the preceding 
hint, the first change is made when the contestant can choose from a, boxes. The 
probability of choosing the right box is the probability of having previously chosen 
the wrong one times the probability of choosing correctly among a, boxes, that is: 
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For the contestant's next change, the same reasoning shows that 

which can be expressed as 

Iterating the process, we have for the last change 

a1 a1 a1 .a ,  al  .a ,  ... a, a ,  .a ,  ... a,.  n 

In (2.1) we have 1 Ia ,  < a ,  < ... < a ,  < n - 1. A strategy is described by a 
subset of {I,  2 , .  . . ,n - 2); (0corresponds to the strategy of making no change at 
all). For each strategy {a,, a,, . . .,a,) c {1,2,.. . ,n - 21, the probability of win- 
ning is given by (2.1). 

This accounts for our first mathematician's assertion, as 

1 1 1 11 
n = 7 , k = 2 ,  a ,  = 4, a ,  = 3, and p,  = - --+-=-

3 3 . 4  3 . 4 . 7  4 2 '  

To help understand our second mathematician's claim, we can play a little with 
what we have and find a few more probabilities in the case n = 7. A patient 
completion of Table 1 (25 entries) would show a most interesting fact: different 
strategies correspond to different probabilities. If similar tables for other values of 
n were made, we would notice that in all cases the probabilities obtained were 
different, not only within one table but also among different tables. This motivates 
the following result. 

Theorem 1. Any rational numberp /q  E (0,11has a unique representation 

where ai are positive integers such that 

I Strategy I Probability 1 
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-- - - -  

Proof: The interval (O,1] can be expressed as the disjoint union (O,1]= U:=,((n 
+ I ) - ' ,  n-'1, so any a E (O,1] belongs to one of the intervals ( ( n  + I ) - ' ,  n-'1. 
Consequently, 

for some A, E [O, 1). If we denote a ,  = A l / ( n  + I ) ,  we have a = (1 - a , ) / n  and 
a ,  E (O,(n + l )F1) .Applying the same procedure to a ,  we get a ,  = (1  - a , ) / m  
( m  > n ) ,  and we eventually get an expansion of the form (2.2): 

1 1 
a = - - - +  a ,  ( m > n ) .  

n n e m  

The algorithm that leads to (2.2) can be summarized by iterating the two opera- 
tions 

where 1x1denotes the greatest integer less or equal than x.  
If a is irrational, all the a i  are irrational and the algorithm never terminates. 

This proves more than promised in the phrasing of the theorem; it proves the 
existence of an infinite expansion of the form (2.2) for any irrational in (O, l] .  

If a =p / q  is a rational number in lowest terms, the algorithm becomes a 
modified Euclidean algorithm. If we divide q by p :  

it is obvious that 

Next we would perform the division of q by r,: 

and so on. Since the sequence of remainders ri is strictly decreasing ( p  > r,  > r ,  
> ...), the algorithm eventually terminates with r, = 0. Therefore the expansion 
(2.2) is finite and the last two divisions are 

q = 0 k - l  . r k - ,  + r,-1 ( 0  5 rk-1 < ~ k - 2 )  

q = a,. r k F l .  , 

Thus, a,-, .r,-, = ( a ,  - l ) . r k F l ,and since r k F , < rk- ,  we have a,-, < a, - 1. 
The uniqueness of the expansions comes from the double inequality 

1 1 1 1< - --+ ... 
-< -.  

a + 1 a ,  a ,  . a 2  a1 

The only duplicate expansion is obtained in the finite case, due to the equality 

1 1 1 

n + 1  n n ( n + l ) '  

That is the reason for the exclusion of two consecutive integers at the end of the 
expansion. rn 
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We denote the expansion (2.2) by 

( a l ,  a , , .  . . ). 
Now, we see how our second mathematician could reconstruct the events of the 

contest. Starting with the probability 11/42, we compute 42 = 11 . 3  + 9 = 9 . 4  + 
6 = 6 . 7 .  Thus 

The uniqueness of the expansion allows the second mathematician to say: 

There were 7 boxes and the contestant changed on two occasions, when there 
were 4 and 3 boxes to choose from. 

3. A REPRESENTATION SYSTEM FOR THE REAL NUMBERS IN (0,lI .  We 
have solved our generalized n-door problem and, at the same time, have discov- 
ered a system of representation for the real numbers cr in (0, I]: 

1 1 1+ -----... 
a 1 a 2 a 3  

where 1 Ia, < a, < a, < ... . 
The first mathematicians who paid any attention to these expansions were 

Lambert (1770) and Lagrange (1798); see [I31 and [121. Later, Ostrogradsky 
(Tl860), and Sierpifiski (1911) were the first to develop a few of their numerical 
properties; see [19] and [27]. Pierce (1929) used the model in an algorithm to find 
algebraic roots of polynomials, 1181. Some authors have attached Pierce's name to 
the expansion that had been previously referred to as "Lambert fractions" or 
"ascending fractions." In a 1986 presentation, Shallit [241 studied the metric theory 
of the model following the methods used for the non-alternated expansions 
(Engel's series) developed in 1947 by Bore1 [3] and LCvy [14], and later by Erdos, 
RCnyi, and Sziisz [4], improved by RCnyi in 1962 [20]. There is also a 1987 paper by 
A. Knopfmacher and J. Knopfmacher [lo], who use the model to construct the real 
numbers. Some interesting new results related to Pierce expansions can be found 
in [25] and [ l l ] .  

The infinite Pierce expansion (1,2,3,4, .  . . ) is the Taylor expansion of 1 - ex 
for x = -1: 

Incidentally, this proves the irrationality of e. Other examples are not so obvious: 

As a system of representation, Pierce expansions are not bad: Truncating the 
expansion of cr = (a,, a,, . . . ,a,) at level n, provides quite a good approximation 
to a :  

which, in the worst case (a, = i, i = 1,2 , . . .), is of the order l / (n  + I)!. 
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4. A NEW ENUMERATION FOR THE POSITIVE RATIONALS. The most fa- 
mous enumeration of the positive rationals is the diagonal ordering 

All fractions appear in this scheme, repeated infinitely many times; p/q 
appears in position (1/2)(p + q - l ) (p  + q - 2) + q. After suppressing repeti- 
tions, to determine the position of the irreducible ones is, as Prof. Hardy says in 
[7, p. 11, more complicated: the computational complexity of the diagonal ordering 
algorithm, if one suppresses all repetitions, is exponential. This problem is inti- 
mately related to the representation of rational numbers [17]. 

The basic idea is to use the binary representation of a positive integer n as a 
string of 0 and 1. Some of these strings can be considered strategies in our 
generalized n-box problem. We use the corresponding Pierce expansion to assign a 
rational to our n. 

To any strictly increasing finite sequence of positive integers {a,, a,, . . . ,a,} 
with 1 I a, < a, < ... < a,, we associate the positive integer n = 2'1-I + 2'2-I 
+ ... +2"k-', or, what amounts to the same, the number n that in the binary 
system is written, from right to left, as 1 in positions a,, a,, . . . ,a, and 0 
elsewhere. For example, 

Now, to any rational number p/q E (0,1] we associate its Pierce expansion 
(a,, a,, . . . ,a,), which may be regarded as the strictly increasing finite sequence of 
positive integers {a,, a,, . . . ,a,}, where a, > 1 + a,-,. Its corresponding positive 
integer has the binary form 10 . .  . , with a 0 in the next-to-last position as we go 
from right to left. To any rational number q/p > 1, we associate the Pierce 
expansion corresponding to its inverse p/q = (a , ,  a,, . . . ,a,) and we then con- 
sider the strictly increasing finite sequence of positive integers {a,, a,, . . . , a,-,, a, 
- 1,a,}. Its corresponding positive integer has the binary form 11...,with a 1 in 
the next-to-last position as we go from right to left. 

Conversely, to any positive integer n written in the binary system as 

2 ' l+2"2+. . .+2 'k  with 0 1 a , < a , <  . . .  < a k ,  

we assign the rational number 

The uniqueness of the Pierce expansion of any rational number in (O,1] ensures 
the bijectivity of the map just defined between the positive integers and the 
positive rationals. 

An example may help us understand the map we have just defined. Let us find 
what rational occupies place 1012 in our enumeration. First we write 1012 in 
binaiy: 
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which corresponds to the fraction (in this case a rational greater than 1): 

The algorithm to find the fraction occupying a given place n has a polynomial 
computational complexity. The inverse algorithm would also have polynomial 
complexity, assuming the correctness of a conjecture formulated by Erdos and 
Shallit in [5] concerning the upper bound of the length of the finite Pierce 
expansion of p/q:  

P
length of the Pierce expansion of 	- = O((log q ) Z ) .

4 

5. A CLOSER LOOK AT PIERCE EXPANSIONS. Let us contemplate what we 
have accomplished and examine Pierce expansions more closely. For each real 
number a in (O,l], define its i-th projection w,(a) to be the map that assigns to a 
its i-th partial quotient: if a = (a, ,  a,, a,, . . . ), then wi(a>= ai. 

A cylinder of order k is the set of numbers such that the first k partial 
quotients are fixed: 

C(a, ,  a,, . . . , a,) = {a~ ( 0 ~ 1 1  = a l ,  w 2 ( a )  = a,, . . . ,w,(a)  = ak}.: w l ( a )  

A cylinder of any order is an interval of length 

1 
I C ( a , , a 2 , + + . , a k ) l= a, .a, ... a,.  (1 + a,) ' 

Moreover, a cylinder of order k is the disjoint union of all the cylinders of order 
k + 1contained in it: 

We can also consider generalized cylinders, in which the fixed partial quotients are 
not the first k; they are not intervals, though they are still unions of intervals. The 
simplest is 

which is a union of cylinders: 

Consequently, its Lebesgue measure is: 

I 


h ( H [ o k ( a )  = n])  = C ala2  ... a,-,n(n + 1)1 5 a l < a 2 <  ... < a k _ ,  5 n - 1  
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One way to evaluate the last sum in (5.1) is to multiply inside by (n - I)! and 
divide outside by the same quantity: 

The right-hand sum in (5.2) can be viewed as the coefficient of xk in the 
polynomial x(x + l)(x + 2) (x + n - I), which is a Stirling number of the second 
kind. The properties of Stirling numbers (both of the first and the second kind) can 
be found in [8, pp. 243-2531, whose notation we follow: [;I. Thus, 

Using this notation, the sums in (5.2) are equal to [:I /(n - I)!. Finally, we have 

With (5.4) and a very simple property of Stirling numbers: 

which follows from (5.3) by considering x = 1, it is easy to prove the following: 

Theorem 2. The set of real numbers in (O,1] whose Pierce expansion contains the 
integer n has Lebesgue measure l / (n  + 1). 

Theorem 2 has an immediate corollary: 

Theorem 3. The set of real numbers in (O,1] whose Pierce expansion does not contain 
the integer n has Lebesgue measure n/(n + 1). 

It is not difficult to generalize Theorem 3: 

Ttheorem 4. The set of real numbers in (O,l] whose Pierce expansion does not 
contain the distinct integers m and n has Lebesgue measure nm/(n + l)(m + 1). 

All these results can be found in [24]. 

6. A CANTOR-TYPE PERFECT SET. A set in R that is closed and has no isolated 
points is said to be perjfect. Such a set coincides with the set of its limit-points (its 
derived set). The easiest example of a perfect set in R is a closed interval, but there 
are perfect sets that not only are not intervals, they do not even contain any 
interval. A classic example of this behavior is Cantor's ternary set 

that is to say, the set of all real numbers in [0, 11that can be written in the ternary 
system without the digit 1. Geometrically, Cantor's set can be described by 
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iterating indefinitely the following procedure: From [0, 11we suppress the central 
open interval (1/3,2/3) and from the remaining two intervals, we suppress the 
corresponding central open intervals (1/9,2/9) and (7/9,8/9), and so on. The 
points that remain after the suppression of all these open intervals constitute 
Cantor's set. 

0 T T T T T 7 1 
1/9 2/9 1/3 2/3 7/9 8/9 

Cantor's set is a perfect set; it is uncountable (a consequence of being perfect) and 
has measure zero (its complement in [O, 11is the union of countably many disjoint 
open intervals with total length 1). The interior of Z? is obviously empty. See [21] 
for details. 

Now, let us consider the set C of real numbers in (O,1] whose Pierce expansion 
contains no odd integers. According to Theorem 4, the Lebesgue measure of C is 

The set C is uncountable since we can establish a one-to-one correspondence 
between its elements and (0,1]: 

It is also easy to prove that C, like Cantor's set, is perfect and its interior is empty. 

7. A CANTOR-TYPE PERFECT SET OF TRANSCENDENTAL NUMBERS. In 
1851 J. Liouville established a very important result that permitted him to exhibit, 
for the first time in mathematics, a transcendental real number (a real number that 
is not the root of any polynomial equation with rational coefficients). A real 
number a is said to be algebraic of degree n if there is a polynomial of degree n 
(but not lower) with rational coefficients that has a as a root. 

Liouville's Theorem. [16, pp. 87-93] If a is algebraic of degree n, (n > I), there 
exists a constant M (depending on a )  such that 

for all rational numbers a/b. 

Consider the following Pierce expansion 

where p is any positive integer. 
The number 1, is transcendental because (3.1) tells us that 

which would contradict Liouville's theorem if 1, were algebraic of degree k. 
We may now consider the set L, of all real numbers in (0,1] whose Pierce 

expansion contains only integers extracted from the Pierce expansion of 1,. It is at 

19991 249A MATHEMATICALEXCURSION 



once seen that L, has measure zero, is uncountable, and (since all its elements 
satisfy inequalities like (7.1)) consists entirely of transcendental numbers. 

8. LOOKING BACK. We have started with an interesting and controversial 
problem, the Monty Hall dilemma (which has a totally probabilistic set-up), and 
have reached some very peculiar subsets of [O, 11: uncountable closed sets with an 
empty interior, without isolated points and of measure zero-the same structure 
as Cantor's ternary set, with the added feature of being formed exclusively by 
transcendental numbers. The connection between such apparently distant concepts 
is a beautiful system for real number representation, Pierce expansions, which 
exactly describe the probability of each one of the possible strategies that can be 
followed by the contestant in a generalization of the Monty Hall problem: the 
n-box problem. We have also encountered a nice (and new) enumeration of the 
positive rationals that is based on both the strategies in the n-box problem and 
Pierce expansions. 

Undoubtedly we have overlooked many unexplored places, but we hope you 
have enjoyed the few we have been lucky enough to find. 
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