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NOTES 
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An Inequality Relating the Circumradius 
and Diameter of Two-Dimensional 
Lattice-Point-Free Convex Bodies 

Poh Wah Awyong 

1. Introduction. The first ideas of convex sets date as far back as Archimedes but 
it was not until the end of the last century that a systematic study gave rise to the 
subject as an independent branch in mathematics. In particular, many geometric 
inequalities for convex bodies have been obtained; see [I], [SI, [lo], [Ill, and [121. 

At the turn of the century, Minkowski [6] published his famous Convex Body 
Theorem, which is the basis for the geometry of numbers. The idea is to interpret 
integer solutions of equations or inequalities as points with integer coordinates 
(lattice points). Minkowski's work provides the link between the theory of convex 
sets and the geometry of numbers. Minkowski's Theorem states that if a convex set 
in the plane is symmetric about the origin and its interior contains no other lattice 
point, then its area is at most 4. By studying other geometrical functionals defined 
on a convex set and varying the conditions on Minkowski's Theorem, many 
inequalities may be obtained for lattice constrained sets; see [2], [3], [4], [S], and [9]. 

In this note, we prove an inequality concerning the circumradius and diameter 
of a planar convex set. We use this inequality to obtain a corresponding result for a 
lattice-point-free convex set. 

2. Notation and Definitions. Throughout this note, K denotes a compact, convex 
set in the plane. The circumradius of K, denoted by R(K) = R, is the radius of the 
smallest disk containing K. The inradius of K, denoted by r (K)  = r, is the radius 
of the largest disk contained in K. The diameter of K, denoted by D(K) = D, is 
the maximal distance between any two points of K. The width of K taken in a 
particular direction is the distance between the two parallel tangents to K perpen- 
dicular to the given direction. The width of K denoted by w(K) = w, is the 
minimum of widths taken in all directions. 

3. Motivation. The result in this note is motivated by an inequality by Blaschke, 
which states w 5 3r for any planar convex set K, with equality when and only 
when K is an equilateral triangle [ l l ,  p. 181. This inequality may be rewritten as 

If K contains no interior lattice point, we have the following result by Scott [7]: 
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Figure 1. Equilateral triangle with no interior lattice points 

with equality when and only when K is congruent to the equilateral triangle shown 
in Figure 1. 

Combining (2) with (I), we have 

with equality when and only when K is congruent to the equilateral triangle shown 
in Figure 1. 

In this note, we prove 'duals' of (1) and (3): 

Theorem. Let K be a planar, compact, convex set. Then 

with equality when and only when K is an  equilateral triangle. If K contains no  lattice 
point in its interior, then 

with equality when and only when K is congruent to the equilateral triangle shown in 
Figure 1. 

4. Proof of the Theorem. We may assume that the interior of K is nonempty, 
otherwise, either K = 0or K is a line segment. If K = 0 ,  then (4) is trivially true. 
If K is a line segment then D = 2R, w = 0, and again, (4) is trivially true. Hence 
we may assume that r # 0. It follows that w # 0. We now define and seek to 
maximize the functional 

1 1 
(2R(K)  - D ( K ) )  = -(2R - D ) .  

w 

Clearly, f (K)  2 0 since D I 2R. We first recall that the circumcircle of a set K 
either contains two diametrically opposite points of K or else it contains three 
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points on the boundary of K that form the vertices of an acute-angled triangle 
[ l l ,  p. 591. In the first case, 2 R  = D and f ( K )  = 0, so K is not maximal. Hence 
we may assume that K contains an acute-angled triangle T with R ( T )  = R(K) .  
Furthermore, since T is contained in K ,  D ( T )  5 D ( K )  and w ( T )Iw(K) .  It 
follows that f ( K )  5 f (T) .  Hence it suffices to maximize f ( K )  for acute-angled 
triangles T.  

Let T = AXYZ be an acute-angled triangle with L Y I L X I L  Z ,  as shown in 
Figure 2. Since L Z  is the largest angle, it follows that XY = D. We first apply to T 

Figure 2. Shear applied to the triangle T 

a shear parallel to XY to obtain the triangle T' = XYZ' with YZ' = XY = D. Let 
P and P' be the circumcentres of T and T' respectively. Since P and P' both lie 
on the perpendicular bisector of the line segment XY, and since PZ' > PZ = R(T) ,  
it follows that P' is farther away from XY than the point P. Hence R(T ' ) > R(T) .  
Furthermore D(T1)= D ( T )and w(T1)= w(T).It follows that f (T0  2 f (T) . Hence 
we need consider only those cases for which T is an isosceles triangle with vertex 
angle at Y .  In this case L X  = L Z  = a 2 r r / 3 .  

We note that w = D sin 2 a  and the sine rule gives 2 R  = D/sin a .  Hence we 
have 

Letting t = tan a gives 

We note that 
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Since f ( K )  is a product of positive, decreasing functions of t, it is itself a positive, 
decreasing function of t. Since a 2 ~ / 3 ,we have t 2 6.Hence the maximal 
value of f ( K )  is attained when t = 6 ,  that is, when T is an equilateral triangle. 
In this case 

1 2 
f ( K )  = - (2R  - D )  s -(2  - 6).

W 3 
Now suppose that K has no lattice point in its interior. Combining (4) with (2) 
gives 

with equality when and only when K is congruent to the equilateral triangle shown 
in Figure 1. 
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Cutting a Polyomino into Triangles 
of Equal Areas 

Sherman K. Stein 

In 1970 Monsky proved that a square cannot be cut into an odd number of 
triangles of equal areas [I], [6,p. 1181. This result has been generalized four times. 
Mead proved that when an n-dimensional cube is cut into simplices of equal 
volumes, the number of simplices is a multiple of n! [2]. Kasimatis proved that 
when a regular n-gon, n 2 5, is cut into triangles of equal areas, the number of 
triangles is a multiple of n [3]. Stein proved that the theorem about the square 
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