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Since f ( K )  is a product of positive, decreasing functions of t, it is itself a positive, 
decreasing function of t. Since a 2 ~ / 3 ,we have t 2 6.Hence the maximal 
value of f ( K )  is attained when t = 6 ,  that is, when T is an equilateral triangle. 
In this case 

1 2 
f ( K )  = - (2R  - D )  s -(2  - 6).

W 3 
Now suppose that K has no lattice point in its interior. Combining (4) with (2) 
gives 

with equality when and only when K is congruent to the equilateral triangle shown 
in Figure 1. 
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Cutting a Polyomino into Triangles 
of Equal Areas 

Sherman K. Stein 

In 1970 Monsky proved that a square cannot be cut into an odd number of 
triangles of equal areas [I], [6,p. 1181. This result has been generalized four times. 
Mead proved that when an n-dimensional cube is cut into simplices of equal 
volumes, the number of simplices is a multiple of n! [2]. Kasimatis proved that 
when a regular n-gon, n 2 5, is cut into triangles of equal areas, the number of 
triangles is a multiple of n [3]. Stein proved that the theorem about the square 
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holds for any centrally symmetric polygon with at most eight sides [4] and Monsky 
generalized this to any centrally symmetric polygon [S]. In this note we extend the 
theorem about squares to polyominoes consisting of an odd number of squares. 

By a standard square in the xy-plane we mean a unit square whose corners have 
integer coordinates. A standard segment is a line segment of unit length joining two 
points with integer coordinates. A polyomino is the union of a finite number of 
standard squares. 

Conjecture 1. When a polyomino is cut into triangles of equal areas, the number 
of triangles is even. 

That is a special case of 

Conjecture 2. When a polygon in the xy-plane that is bounded by lines parallel to 
the axes is cut into triangles of equal areas, the number of triangles is even. 

The following theorem confirms a special case of the first conjecture. 

Theorem. When a polyomino consisting of an odd number of standard squares is cut 
into triangles of equal areas, the number of triangles is euen. 

We use the machinery described in [I] and [6, pp. 110-1171, which we summa-
rize briefly. Define p :  Q + Q by p(2"b/c) = a ,  where b and c are odd, and 
p(0) = a.For instance, p(2) = 1, p(3) = 0, and p(5/2) = - 1. Label a point 
(x, y) E Q x Q by Po if p(x) > 0 and p(y) > 0, by P, if p(x) 5 0 and p(y) 2 
p(x), and by P, if p(x) > p(y) and p(y)  5 0. For example, (2,0) is labeled Po,  
(1,3) is labeled PI,  and (2 , l )  and (1,1/2) are labeled P,. It can be shown that if a 
line segment formed of standard segments has ends labeled PI and P,, then the 
ends of the individual segments are labeled either P, or P, and an odd number of 
them have both labels. The following lemma [6, p. 1181 is the key tool in 
establishing the theorem. 

Lemma. Let a polyomino R have area A. Assume that on  the boundary of R are an  
odd number of standard edges with ends labeled P, and P, . Then p(n) 2 p(2A )  if R 
is cut into n triangles of equal areas. 

Proof of the theorem: As may be checked, the only standard segments whose ends 
are labeled P, and P, are parallel to the x-axis and lie on lines with an odd 
y-coordinate. Thus on the border of each standard square is one edge with the 
labels P, and P,. Edges in the interior of R are adjacent to two standard squares, 
while edges on the boundary are adjacent to one standard square in R. Since there 
are an odd number of standard squares in R,  the assumption of the lemma holds. 
Because A is an integer, p(2A) 2 1.Thus the number of triangles is even. 

The theorem also holds for polyominoes consisting of at most 6 standard 
squares. (Incidentally, the even case implies the odd one since each standard 
square can be cut into four congruent squares.) As an illustration, consider the 
polyomino of area 6 formed of a row of four standard squares with a square 
attached at each end on the same side of the row, as shown in Figure 1. Note that 
it can be cut into six triangles of equal areas. No matter how we rotate or translate 
the polyomino, the hypothesis of the lemma cannot apply, for the conclusion would 
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Figure 1 

be that the number of triangles would be a multiple of 4. It is necessary to 
transform the polyomino so that the image has an area A for which P(A) 5 0. 
Applying the transformation (x, y) + (x, y/2) followed by the translation by (1, l )  
produces a labeling described in the hypothesis of the lemma, as may be verified. 
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A Short Proof of Turan's Theorem 

William Staton 

Extremal graph theory is the search for the thresholds in edge density where 
substructures of interest are forced to appear in graphs. The canonical extremal 
theorem involving structure S is of the type: If G is a graph with n vertices 
containing no S, then G has no more than f(n)  edges. The genesis moment of 
extremal graph theory occurred in 1941 with Turin's article [I] in which he proved 
the canonical extremal result for S = K,, a complete graph with r vertices. The 
purpose of this note is to provide a new and perhaps shorter proof than has 
previously been noticed. 

Theorem (Turin, 1941). Graphs with n vertices containing no K,  have no more than 
( r  - 2)n2/(2r - 2) edges, f o r r  2 2. 
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